2.2 整式的加减(2)

2018-11-17

    教学内容    课本第66页至第68页.    教学目标    1.知识与技能    能运用运算律探究去括号法则,并且利用去括号法则将整式化简.    2.过程与方法    经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.    3.情感态度与价值观    培养学生主动探究、合作交流的意识,严谨治学的学习态度.    重、难点与关键    1.重点:去括号法则,准确应用法则将整式化简.    2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.    3.关键:准确理解去括号法则.    教具准备    投影仪.    教学过程    一、新授    利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?    现在我们来看本章引言中的问题(3):    在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为    100t+120(t-0.5)千米    ①    冻土地段与非冻土地段相差    100t-120(t-0.5)千米    ②    上面的式子①、②都带有括号,它们应如何化简?    思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:    利用分配律,可以去括号,合并同类项,得:    100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60    100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60    我们知道,化简带有括号的整式,首先应先去括号.    上面两式去括号部分变形分别为:    +120(t-0.5)=+120t-60   ③    -120(t-0.5)=-120+60    ④    比较③、④两式,你能发现去括号时符号变化的规律吗?    思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:    如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;    如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.    特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).    利用分配律,可以将式子中的括号去掉,得:    +(x-3)=x-3   (括号没了,括号内的每一项都没有变号)

1/3