教师提问,学生回答,教师板书.你能仿照圆心角的定义给圆周角下一个定义吗?圆周角定义:顶点在圆上,并且两边都和圆相交的角叫做圆周角.这时教师向全体学生提出这样两个问题:①顶点在圆上的角是圆周角?②圆和角的两边都相交的角是圆周角?教师不做任何解释,指导学生画图并回答出答案对与否.选择出有代表性的答案用幻灯放出来,师生共同批改.这样做的好处是学生自己根据题意画出图形,加深了对概念的理解,师生共同批改,使学生抓住概念的本质特征,这时由学生归纳出圆周角的两个特征.接下来给学生一组辨析题:练习1:判别图7-29中各圆形中的角是不是圆周角,并说明理由.
通过这组练习题,学生就能很快的深入理解圆周角的概念,准确的记忆圆周角的定义.这时教师启发学生观察电脑演示的圆周角的三个图,说明圆心和圆周角的位置关系的三种情况. 在圆周角定理的证明时,不是教师直接告诉学生的定理内容,而是让学生把自己课前准备好的圆拿出来,在圆上画一个圆周角,然后再画同弧所对的圆心角,由同桌两人用量角器量出这两个角的度数,请三名同学把量得数据告诉同学们,亲自试验发现它们之间的关系.这时由学生总结出本节课的定理,然后教师把定理内容写在黑板上.定理:一条弧所对的圆周角等于它所对的圆心角的一半.这时教师提问一名中下生:“一条弧所对的圆周角有多少个?圆心角呢?”教师概括:虽然一条弧所对的圆周角有无数个,但它们与圆心的位置关系,归纳起来却只有三种情况.下面我们就来证明这个定理的成立.已知:⊙o中, 所对的圆周角是∠bac,圆心角是∠boc.分析:(1)如果圆心o在∠bac的一边ab上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明.如果圆心o不在∠bac的一边ab上,我们如何证明这个结论成立呢?教师进一步分析:“能否把(2)、(3)转化为(1)圆心在角的一边上的特殊情况,那么只要作出直径ad,将∠bac转化为上述情况的两角之和或差即可,从而使问题得以解决.