《平均数》教案 篇1
设计说明
数学问题来源于生活,并应用于生活。教材统计了学生踢毽的个数并通过比较男、女两队哪个队踢得多,提出数学问题。课堂再现踢毽比赛情境,学生统计比赛结果后,发现参赛男、女生人数不同,无法直接判断哪队胜,引出数学问题,激发学生的求知欲望,进而让学生探究解决问题的方法。
1.本节课重点创设在课堂上现场进行踢毽比赛的情境,让学生感受到平均数在生活中的重要作用,并在解决问题中感受:在数据个数不等的情况下,每组数据的总和不能反映总体情况,而用平均数才能反映每组数据的整体水平,从而加深学生对平均数的`含义的理解。
2.教师与学生只是角色上的不同,在人格上是平等的。教师必须尊重学生的人格、思想感情、健康的个性并接受学生提出的合理要求,营造和谐平等、相互尊重、轻松愉悦的学习气氛。学生在这样的气氛下讨论怎么比较哪队胜合理时,才会开动脑筋认真思考、踊跃发言、大胆回答。
课前准备
教师准备多媒体课件调查表统计表
学生准备调查表统计表
教学过程
⊙创设情境,引入新课
1.同学们喜欢哪些体育运动呢?今天我们在课堂上就进行一场踢毽比赛,男生队选出5名代表,女生队选出4名代表,选两名同学做监督员,两名同学做成绩记录员。
2.开始比赛,记录成绩。
男生队
姓名
踢毽个数
女生队
姓名
踢毽个数
3.比赛结束了,哪个队的成绩好呢?
⊙引导启发,探究新知
1.××小学也举行了踢毽比赛,看教材91页中的数据,我们怎么才能知道哪个队的成绩好呢?请同学们借助课堂活动卡,小组讨论交流。(出示课堂活动卡)
2.小组汇报。
生1:我们小组通过讨论、交流认为:要想知道哪个队的成绩好,算一算每个队踢毽的总数就可以了,总数多的就代表成绩好。
生2:我们小组不同意这种做法,这样不公平,因为两队的人数不一样。
生3:我们小组认为用每队的平均成绩来比较是合理的。男生队平均每人踢毽个数是(19+15+16+20+15)÷5=17(个),女生队平均每人踢毽个数是(18+20+19+19)÷4=19(个)。通过比较平均数得出:女生队的成绩好。
师:现在同学们用上面求平均成绩的方法来解决上课开始时提出的男生队和女生队哪个队的踢毽子成绩好的问题。
《平均数》教案 篇2
教学要求
使学生进一步理解求平均数的意义,学会较复杂的求平均数的方法。
教学重点
学会较复杂的求平均数的方法。
教学用具
投影仪(片)
教学过程
一、创设情境
投影显示第13页的复习题,让学生思考并回答:
(1)这题要求的是什么?
(2)必须要知道什么?
(3)怎样列式解答?
计算的结果能说明什么问题?它有什么用?
思考:全班同学上美术课每个人都带了些“橡皮泥”做手工用,为了使大家都拥有有等量的“橡皮泥”,我们该用什么办法把我们手中的“橡皮泥”平均一下呢?
今天这节课我们将继续学习求平均数(板书课题)
二、探索研究
小组合作讨论:研究例1。
1、观察比较:例1与复习题有什么相同处与不同处?
2、思考并回答:
(1)这题求的是什么的平均数?
(2)必须要知道什么?
(3)你会解答这道题吗?
(先让学生分小组试着做一做,再选几名学生代表,讲一讲他们是怎样做的,老师将学生说的解题过程板书出来后集体订正)
①全班一共投中多少个?28+33+23=84(个)
②全班一共有多少人?10+11+9=30(人)
③全班平均每人投中多少个?84÷30=2.8(个)
列成综合算式是
(28+33+23)÷(10+11+9)=2.8(个)
答:全班平均每人投中2.8个。
小组合作学习:研究例2。
1、观察比较:例1与例2的条件与问题又有什么相同点和不同点?
2、思考并解答:你能联系例1的.解题思路计算出这题的结果吗?
放手让学生尝试做一做,再讲一讲是怎样做的,老师将学生说的解题过程板书出来,使学生明白:条件与与问题不同,计算方法和步骤也就不同,最后集体订正。
①全班一共投中多少个?2.5×12+3×11+3.2×10=95(个)
②全班一共有多少人?12+11+10=33(人)
③全班平均每人投中多少个?95÷33≈2.9(个)
列成综合算式是:
(2.5×12+3×11+3.2×10)÷(12+11+10)
=95÷33
≈2.9(个)
答:全班平均每人投中2.9个。
三、课堂实践
做教材第14页的“做一做”
四、课堂
学生今天学习的内容。
五、课堂作业
1、练习三的第2题。
2、练习三的第1、3、4题
《平均数》教案 篇3
素质教育目标:
1。知识目标:使学生理解平均数的含义,初步学会简单的求平均数的方法。
2。能力目标:理解平均数在统计上的意义。
3。情感目标:体会数学与生活的密切联系,培养学生的实践能力。
重点难点
重点:理解平均数的含义。
难点:初步学会简单的求平均数的方法。
教具准备:多媒体课件
教学过程
一、创设情境,提出问题
上周的作业,有三位同学做得最好,今天老师带来些铅笔想奖励给他们。大家看统计图,哪三位做得最好,分别获得了几支铅笔?(叶雨7支、叶茹5支、李新3支)(课件展示)
师:你们觉得这样分公平吗?怎样才能公平?
学生讨论,指名汇报。
(把叶雨的7支拿2支给李新,这样每人都是5支。课件展示)
很好。谁能给这种方法取个名字?(“移多补少法”。板书)
(先把三个人的铅笔全合起来有15支,再平均分给这3个人,这样每个人都是5支。)
这种方法也很好!我们也给它取个名字。(“先合再分”板书)。
刚才我们用不同的方法,都能使这三个人铅笔的支数从不等变成相等,都是5。
教师指出:这里的“5”就是“7、5、3”这三个数的平均数。板书课题:平均数
通过刚才的学习,同学们能简单的说一说什么是平均数吗?(学生思考或者讨论,教师在听取汇报后总结。)
几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。
师:说到平均数,同学们能联想到我们以前学的哪个数学概念。(平均分)是呀,平均数是5,那么他们每人的铅笔支数应该都是5,是这样吗?(质疑,区分平均数和平均分)
师:难道,老师真的不公正吗?他们的铅笔到底要不要重新平均分配呢?告诉你们,不能。这样做是因为叶雨书写最干净,而且明显进步,而李新最近书写有些下降了。同学们觉得老师做得公平吗?刚才的平均数只是一个反映今天奖品发放总体情况的数,不是真的把奖品平均分了。
同学们在生活中还听到过哪些平均数?说一说。(见课件)
看来平均数的用处还真大,同学们要好好学习哟!
二、寻找方法,解决问题。
同学们,上个月我们班每个同学都通过自己的努力,获得了很多小红星。我们来看一下第一小组和第二小组的统计结果。
第一小组上月获小红星个数统计表
单位:个
叶茹李新吴玉刘超
14111013
第二小组上月获小红星个数统计表
单位:个
叶雨付涛张新江南夏丽
15128119
其中,叶雨的个数最多,我宣布第二小组为优胜组,你们同意吗?
生1:不同意,她一个人怎能代表全组,就算叶雨最多,可是张新才8个。
师:那你们说怎么比呢?
生2:可以把每个组的个数加起来,看哪个组的个数最多,哪个组就好。
生3:可第一小组比第二小组少了一个人呀!怎么能比?
同学们认为怎样比最合适呢?(平均数)
对,把几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,也就是把两个小组的平均数分别求出来再比较。(大家领悟到比较平均数最公平,从而认识平均数在统计中的用处。)
下面,我们就各显神通,先求出第一小组的平均数吧!
小组讨论、汇报。
(将叶茹多的两个分给吴玉,刘超多的一个分给李新,这样,她们每个人都得到了12个,也就是第一小组的平均数是12个。)
不错,方法很简洁,他用的什么方法?有不同的方法吗?
(先求出四个人的总个数,再求出平均每人的个数。)
他用的方法就是——先合再分法。
看来,大家都非常聪明,第二小组的平均个数会求吗?
你们觉得这时我们求平均数用哪种方法比较合适?为什么?
学生在练习本上计算,指名板演,集体订正。
为什么这里求得的总数除以的是5而不是4?
(先合再分法)
小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少法比较简单;人数多,差距大,用先合再分的方法比较简单。
我们看,第一小组的平均数是12,可是14、11、13、10这几个数里,没有一个是12的,它们有的比12大,有的比12小;第二小组的平均数是11,可是15、12、8、11、9这几个数里面也只有一个11,并不是每一个数都是11,它们有的比11大,有的比11小。所以说平均数反映的是一组数据的总体情况。
《平均数》教案 篇4
教材分析:
平均数是简单统计中的一个重要概念,是用来表示统计对象的一般水平,描述数据集中程度的一个统计量。用它可以反映一组数据的总体水平,也可以对不同数据进行比较,在日常生活中,经常遇到平均数的概念。
本小节安排了两个例题,例1教学平均数的意义和平均数的求法,选用了收集塑料瓶这一紧密联系学生实际的生活实例,让学生在生活中去学习知识,解决问题。同时,又给学生渗透了环保的意识。例2中给出两个数据表,让学生根据数据表求出平均数,并进行比较,重点让学生体会平均数可以反映一组数据的总体情况和区别不同数据的总体情况。练习中提供了一些让学生在实际生活中进行调查的练习题,让学生在实践中去了解统计知识,掌握求平均数的方法。
学情分析:
本节课所面对的是四年级的学生,他们已经具备平均分的基础知识,并且有初步的合作意识与合作能力,但是平均数对于学生来说是一个全新的概念,所以应着重让学生理解平均数的意义,并在此基础上掌握计算平均数的方法。这就要求作为老师的我需要结合学生特点采用合适的教学手段,及充分利用教具学具等资源在上课过程中给学生加以引导。
教学目标:
1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。
2、过程与方法:初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。
3、情感态度与价值观:在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学的兴趣,积累积极的数学学习体验。
重难点:
重点:理解平均数的含义,会求平均数。
难点:平均数的统计意义。教学准备:PPT、教具。
教学过程:
一、激情引入
师:都说田各庄小学的学生不仅学习成绩好,体育运动方面也很不错。老师想问问你们,你们都喜欢哪项体育运动?(点名回答)
师:你们的爱好还真是很广泛啊,老师认识一个小朋友,他特别喜欢游泳。他非要到这个池塘游泳,你觉得他下水游泳安全吗?小组之内讨论讨论,说说你的观点。(教师巡视,挑出持不同意见的两个代表到台上)
师:这两名同学对这件事的看法不一样,大家听听他们的观点。(相同意见的同学可以补充意见)
师:看大家讨论的这么激烈,等今天咱们学习了平均数的相关知识,就知道是不是安全的。
二:学习新知
师:刘老师所在的学校为了丰富同学们的课余活动,创办了许多社团,我就是环保社团的一员。我们环保社团利用周末的时间捡了很多废旧瓶子,这张就是四名同学捡瓶子的数量统计图,通过这张统计图,你发现了哪些数学信息?(指名回答)
师:每个小组手中都有这个统计图,小组之内合作研究,动手操作,怎么解决这个问题。(教师巡视指导)
师:我看同学们都有了结果,哪个小组派代表上前面来演示一下?(指名上台)
师:就像我们刚才那样,把原来几个不相同的数,通过移多的补少的,得到一个同样多的数,这个同样多的数就是原来那几个数的平均数。也就是说,我们得到的13是哪几个数的平均数?(学生回答)我们完整的说一遍,13是14、12、11、15的平均数。
师:在数学上,我们把这种求平均数的方法叫“移多补少”,其实,在现实生活中,这种方法是很少用到的,因为当我们遇到的数据又大又多的时候,这种方法比较麻烦。那么,你有其他方法求得平均数吗?小组之内讨论,把结果写在练习纸上。
师:谁来说一说你是怎么解决这个问题的?(指名回答)(教师板书列式计算的方法)
师:老师问一问,这个算式中,每一部分求的是什么?(引导学生概括出总数÷份数=平均数)
师:在数学上,我们把“总数÷份数=平均数”这种方法叫“求和平分”。
师:老师问问你们,求出的平均数是13,就真的代表每个人都捡了13个吗?(不是),我们观察一下,捡的最多的是多少个?最少的是多少个?和平均数比较你发现了什么?(引导学生总结出“最大的数﹥平均数﹥最小的数”)这四个人当中,真的有人捡到13个吗?(没有),也就是说平均数只是一个虚拟的数,它有可能出现在数据中,也有可能根本不会出现。
师:明白了平均数的范围,在以后计算平均数时,我们可以对平均数进行估计,也可以检验我们算出的平均数是不是合理的。
师:我们来看,这是5位同学向灾区捐书的情况,通过这张统计表,你得到哪些数学信息?(指名回答),我们猜测一下,平均数可能是几?(指名回答)下面动手计算出平均数?
三、知识运用
师:除了环保社团,我们看看花样踢毽社团,有什么活动呢?
(播放踢毽比赛的视频)
师:这是踢毽比赛的成绩表,如果你是裁判,你对于比赛结果有异议吗?
生:不公平,人数不同,不应该比较总数,应该比较平均数。
师:我们来思考一下,为什么比较平均数就公平了呢?平均数能代表单个数据吗?(不能)它代表的是这一组数据的总体水平。
师:那同学生动手计算出男女两队的平均成绩,判出胜负。
师:平均数帮我们解决了这场比赛的输赢问题,其实它的作用不止这些,它还能帮我们更好地了解身边的事情,下面拿出你们的调查表,说说你们都调查了什么?(指名回答)你们能动手算出调查的平均数吗?请在练习纸上计算出来。(指名学生上台展示自己的调查及计算)
师:老师看到其他同学也做了很多有意义的调查,其实我们的生活中处处蕴藏着数学,数学就来源于我们的生活,老师希望你们以后多多留心观察。
四、课堂小结
师:今天学得开心吗?谁来说说你今天有什么收获?(指名回答)
五、作业
92页做一做第二题
六、板书
平均数代表总体水平
总数÷ 份数=平均数
(14+12+11+15)÷ 4 =13(个)
最大的数>平均数>最小的数
《平均数》教案 篇5
教学内容:
教材第43页例2,练习十一第4、5题。
教学目标:
1.使学生进一步掌握平均数的意义和求平均数的方法。
2.懂得平均数在统计学上的意义和作用。
3.培养学生能够灵活运用所学的知识,灵活的解决一些简单的`实际问题。
教学重点:
掌握平均数的意义。
教学难点:
掌握求平均数的方法。
教学过程:
一、复习引入
三年级二班分成三组投小篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每一组投中多少个?
提问:题目的已知条件和问题分别是什么?
要求平均每一组投中多少个?应该怎样列?
提问:(28+33+23)3表示什么?3表示什么?把投中的总数以3表示什么?
二、快乐体验,学习新知
1、出示教科书第43页的例题2。
提问:从这两张统计表中,大家发现了什么?
在一场篮球比赛中,除了技术因素以外,还有什么因素也比较重要?
场上哪一个对的身高占优势,我们能根据个别队员来作判断吗?我们要看整个对的平均身高。现在就请大家算一算,哪一个对的平均身高占优势。
2、学生动手列式计算。
3、教师:从这两个平均数,能反映出这两个队除技术外的另一个实力,说明平均书可以反映一组数据的总体情况和区别于不同数据的总体情况,这是我们学习平均数的一个重要的作用。
三、巩固练习
1、科书第45页练习十一的第4题:
(1)完成第1小题。提问:什么叫月平均销售量?
要求哪种饼干月平均销售量多?多多少?应该怎样列式?
(2)完成第2小题让学生自由发表看法。
(3)完成第3小题。你从图中还得到什么信息,告诉全班同学。
2、练习十一的第5题。
学生独立完成,集体订正。
四、课堂小结:
本节课学习了什么?你有什么收获?
《平均数》教案 篇6
预设目标1、 通过教学,使学生进一步掌握平均数应用题的基本数量关系,能正确求某一种相关数量的平均数。
2、 通过实际计算,进一步知道平均数这个统计量在实际生活中的应用,体会到数学的应用价值。
教学重点进一步掌握平均数应用题的基本数量关系。
教学难点学生择优意识的培养。
教学准备课件、卡片、作业纸。
教学板块教与学的预设(师生活动)设计意图一、 创设情境,引出课题。
一、创设情境,引出课题。
1. 同学们,你们喜欢旅游吗?都去过哪些地方?2. 小明的爸爸今年暑假准备带全家参加春秋旅行社组织的鹿鸣山风景一日游。
安排小明去买票,小明来到旅行社售票处,只见窗口写着:鹿鸣山风景一日游门票价格:甲方案:成人每位120元,小孩每位40元。
乙方案:团体5人以上每位80元。
3. 这两种不同的买票方法你理解吗?你是怎么理解的?如果你是小明,准备怎样买票?二. 引导探索,优化选择。
1. 出示例2,引导学生分析两种方案。
让学生回答问题,引起参与学习的兴趣。
让学生先尝试发表意见,初步知道选择买票的`方法不同和参加旅游的人数有关。
教学板块教与学的预设(师生活动)设计意图二、引导探索,优化选择。
三、巩固练习,应用规律。
四、课堂小结,深化提高。
(1) 成人7位,小孩3位,怎样购票合算?按甲方案购票平均每位多少元?(2) 成人3位,小孩7位,怎样购票合算?按甲方案购票平均每位多少元?2.首先,你要明白这两种方案的主要区别是什么?(团体购票与个人购票)3.怎样计算甲方案平均每位多少元?4.如果按甲方案购票,下列各种组队情况平均每人多少元?请大家独立完成作业纸上的表格一。
5.怎样比较两种方案?6.什么情况下按甲方案买票省钱?(小孩人数多,成人人数少)什么情况下按乙方案买票省钱?(成人人数多,小孩人数少)7.除甲乙两种方案以外,还有什么另外的方案吗?三. 巩固练习,应用规律。
完成练习纸作业。
四. 课堂小结,深化提高。
1. 这堂课我们学了什么?2. 根据给出的优惠措施,买票时一般情况下要考虑哪些因素?(总人数及团体的构成)3. 学了这堂课,你有什么体会?小组合作,分开计算,再把不同方案的计算结果集中在一起,交换检查,观察对比,想想各种情况下用哪种方案省钱。
引导学生得出最合算的方案。
练一练的题目,先让学生判断各种应采用的方案,再计算。
《平均数》教案 篇7
第一课时素质教育目标 (一)知识教学点 1.使学生初步了解统计知识是应用广泛的数学内容 . 2.了解平均数的意义,会计算一组数据的平均数 . 3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 . (二)能力训练点 培养学生的观察能力、计算能力 . (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 . 2.渗透数学来源于实践,反地来又作用于实践的观点 . (四)美育渗透点 通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 . 重点·难点·疑点及解决办法 1.教学重点:平均数的概念及其计算 . 2.教学难点 :平均数的简化计算 . 3.教学疑点:平均数简化公式的应用,a如何选择 . 4.解决办法:分清两个公式,公式②的运用要选择一个适当的a . 教学步骤 (一)明确目标 在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片) 为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下: 甲 7 8 6 8 6 5 9 10 7 4 乙 9 5 7 8 7 6 8 6 7 7 1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛? 教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法. 对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣. (二)整体感知 解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识. (三)教学过程 这节课我们首先来学习平均数. 1.(出示幻灯片)请同学看下面问题: 某班第一小组一次数学测验的成绩如下: 86 91 100 72 93 89 90 85 75 95 这个小组的平均成绩是多少? 教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 . 2.平均数的概念及计算公式 一般地,如果有n个数x1、x2、x3、x4…xn ,那么x=( x1+x2+x3+x4+…+xn)/n ① 叫做这n个数的平均数, 读作“x拨” . 这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 . 3.平均数计算公式①的应用 例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃): -6,-5,-7,-6,-4,-5,-7,-8,-7 求它们的平均气温 . 让学生动手计算,以巩固平均数计算公式(一名学生板演) 教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 . 例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克): 210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215 计算它们的平均质量 .(用投影仪打出) 引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 . 教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 . 学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 . 讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 . 通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 . 3.推导公式② 一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到x1▎=x1-a, x2▎=x2-a, x3▎=x3-a, ┅xn▎=xn-a,那么x▎=x-a ② 为了加深学生对公式②的认识,再让学生指出例2的平均质量各是什么?(学生回答) 课堂练习: 教材P148中~P149中1,2,3 (四)总结、扩展 知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 . 2.求n个数据的平均数的公式① . 3.平均数的简化计算公式② .这个公式很重要,要学会运用 . 方法小结:通过本节课我们学到了示一组数据平均数的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 . 八、布置作业 教材P153中1、2、3、4 .
《平均数》教案 篇8
一、 复习铺垫,导入新课
小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。
出示动物寿命统计表:
小猫老鼠大象乌龟
寿命/年6251152 提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)
谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)
【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】
二、 创设情境,自主探索
1. 呈现套圈情境。
多媒体演示“套圈比赛”的场景。
谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。
2. 引入平均数。
出示男、女生套圈成绩统计图。
①提问:从统计图中,你知道了什么?
结合学生的想法,相机进行引导。
想法一:男生有4人,女生有5人。(为比较总数预设)
想法二:男生每人套中的个数,谁来介绍女生没人套中的个数。
②男生套得准一些还是女生套得准一些?你有什么方法?
和你的同桌说说自己的想法。
想法一:女生套得准一些,因为套中的最多的是吴燕。
追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的`也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?
想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。
③追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的人数不相等,比较总数,是不公平的。
可以怎么办呢?
想法三:分别求出男、女生平均每人套中的个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。
追问:这样比公平吗?(公平)我们就用这种方法试一试。
【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】
4. 理解平均数。
④操作:你知道男生平均每人套中多少个圈吗?
请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。
学生可能出现两种方法:一是移多补少;二是先求和再求平均数。
⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?
可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少
反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。
⑥还有其他的方法吗?
引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?
28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)
⑨你能看出,7比谁套中的个数多?比谁套中的个数少?
小结:平均数比最大的数小,比最小的数大
【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】
⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?
⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)
30÷5=6(个)
⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)
⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?
仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。
提问:现在你能判断男生套得准还是女生套得准吗?
⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?
相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)
⑵平均数比最大的数小,比最小的数大大。
⑶平均数都是代表了一个整体的水平。
不同:总数不同,人数不同,平均数也不同。
《平均数》教案 篇9
第一步:引入新课:
在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)
第二步:讲授新课:
1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:
95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92
甲小组:X==91(分)
甲小组做得对吗?有不同求法吗?
乙小组:
乙小组的做法可以吗?还有不同求法吗?
丙小组:先取一个数90做为基准a,则每个数分别与90的差为:
5、9、-3、0、0、-4、……、2、2
求出以上新的一组数的平均数X’=1
所以原数组的平均数为X=X’+90=91
想一想,丙小组的计算对吗?
2、议一议:问:求平均数有哪几种方法?
①平均数:一般地,如果有n个数x1,x2,……,xn,那么,叫做这n个数的.平均数,读作“x拔”。
②加权平均数:如果n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次,(这里f1+f2+……+fk=n),那么,根据平均数的定义,这n个数的平均数可以表示为 这样求得的平均数叫做加权平均数,其中f1,f2,……,fk叫做权。
③利用基准求平均数X=X’+a
问:以上几种求法各有什么特点呢?
公式(1)适用于数据较小,且较分散。
公式(2)适用于出现较多重复数据。
公式(3)适用于数据较为接近于某一数据。
《平均数》教案 篇10
素质教育目标:
1、知识目标:使学生理解平均数的含义,初步学会简单的求平均数的方法。
2、能力目标:理解平均数在统计上的意义。
3、情感目标:体会数学与生活的密切联系,培养学生的实践能力。
重点难点
重点:理解平均数的含义。
难点:初步学会简单的求平均数的方法。
教具准备:多媒体课件
教学过程
一、创设情境,提出问题
上周的作业,有三位同学做得最好,今天老师带来些铅笔想奖励给他们。大家看统计图,哪三位做得最好,分别获得了几支铅笔?(叶雨7支、叶茹5支、李新3支)(课件展示)
师:你们觉得这样分公平吗?怎样才能公平?
学生讨论,指名汇报。
(把叶雨的7支拿2支给李新,这样每人都是5支。课件展示)
很好。谁能给这种方法取个名字?(“移多补少法”。板书)
(先把三个人的铅笔全合起来有15支,再平均分给这3个人,这样每个人都是5支。)
这种方法也很好!我们也给它取个名字。(“先合再分”板书)。
刚才我们用不同的方法,都能使这三个人铅笔的支数从不等变成相等,都是5。
教师指出:这里的“5”就是“7、5、3”这三个数的平均数。板书课题:平均数
通过刚才的学习,同学们能简单的说一说什么是平均数吗?(学生思考或者讨论,教师在听取汇报后总结。)
几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。
师:说到平均数,同学们能联想到我们以前学的哪个数学概念。(平均分)是呀,平均数是5,那么他们每人的铅笔支数应该都是5,是这样吗?(质疑,区分平均数和平均分)
师:难道,老师真的不公正吗?他们的铅笔到底要不要重新平均分配呢?告诉你们,不能。这样做是因为叶雨书写最干净,而且明显进步,而李新最近书写有些下降了。同学们觉得老师做得公平吗?刚才的平均数只是一个反映今天奖品发放总体情况的数,不是真的把奖品平均分了。
同学们在生活中还听到过哪些平均数?说一说。(见课件)
看来平均数的用处还真大,同学们要好好学习哟!
二、寻找方法,解决问题。
同学们,上个月我们班每个同学都通过自己的.努力,获得了很多小红星。我们来看一下第一小组和第二小组的统计结果。
其中,叶雨的个数最多,我宣布第二小组为优胜组,你们同意吗?
生1:不同意,她一个人怎能代表全组,就算叶雨最多,可是张新才8个。
师:那你们说怎么比呢?
生2:可以把每个组的个数加起来,看哪个组的个数最多,哪个组就好。
生3:可第一小组比第二小组少了一个人呀!怎么能比?
同学们认为怎样比最合适呢?(平均数)
对,把几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,也就是把两个小组的平均数分别求出来再比较。(大家领悟到比较平均数最公平,从而认识平均数在统计中的用处。)
下面,我们就各显神通,先求出第一小组的平均数吧!
小组讨论、汇报。
(将叶茹多的两个分给吴玉,刘超多的一个分给李新,这样,她们每个人都得到了12个,也就是第一小组的平均数是12个。)
不错,方法很简洁,他用的什么方法?有不同的方法吗?
(先求出四个人的总个数,再求出平均每人的个数。)
他用的方法就是——先合再分法。
看来,大家都非常聪明,第二小组的平均个数会求吗?
你们觉得这时我们求平均数用哪种方法比较合适?为什么?
学生在练习本上计算,指名板演,集体订正。
为什么这里求得的总数除以的是5而不是4?
(先合再分法)
小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少法比较简单;人数多,差距大,用先合再分的方法比较简单。
我们看,第一小组的平均数是12,可是14、11、13、10这几个数里,没有一个是12的,它们有的比12大,有的比12小;第二小组的平均数是11,可是15、12、8、11、9这几个数里面也只有一个11,并不是每一个数都是11,它们有的比11大,有的比11小。所以说平均数反映的是一组数据的总体情况。
《平均数》教案 篇11
教学目标:
1、使学生理解平均数的含义,初步学会简单的求平均数的方法。
2、理解平均数在统计学上的意义,感受数学与生活的联系。
3、发展学生解决问题的能力。
重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。
教学过程:
一、理解平均数
1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?
2、老师(出示两个笔筒分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。
3、引入“平均数”象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的'笔的平均数。
4、学生讨论:你们喜欢刚才谁的方法?
二、学习计算平均数
1、出示情景图:说说老师和同学们在干什么?
2、出示统计图:引导学生收集信息。
3、引导学生运用“移多补少”的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。
4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?
5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。
6、小结求平均数的方法。
三、巩固训练
1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?
2、根据统计表算一算,三年段平均每班踢几下?
班级三(1)三(2)三(3)三(4)
踢的次数
四、小结:
通过这节课的学习,你们有什么收获,还有什么问题?
五、布置作业:
练习十一1、2、3
《平均数》教案 篇12
教学理念
在学习中培养让学生自己发现、自己讲解、自己动手、自己小结的思想,培养他们主动的学习意识和创造精神,平均数的综合运用。
预设目标
1、 通过教学,使学生进一步掌握平均数应用题的基本数量关系,能正确求某一种相关数量的平均数。
2、 通过实际计算,进一步知道平均数这个统计量在实际生活中的应用,体会到数学的应用价值。
教学重点
进一步掌握平均数应用题的基本数量关系。
教学难点
学生择优意识的培养。
教学准备
课件、卡片、作业纸。
教学板块
教与学的预设
(师生活动)
设计意图
一、创设情境,引出课题。
1. 同学们,你们喜欢旅游吗?都去过哪些地方?
2. 小明的爸爸今年暑假准备带全家参加春秋旅行社组织的鹿鸣山风景一日游。安排小明去买票,小明来到旅行社售票处,只见窗口写着:
鹿鸣山风景一日游门票价格:
甲方案:成人每位120元,小孩每位40元。
乙方案:团体5人以上每位80元。
3. 这两种不同的买票方法你理解吗?你是怎么理解的?
如果你是小明,准备怎样买票?
二. 引导探索,优化选择。
1. 出示例2,引导学生分析两种方案。
让学生回答问题,引起参与学习的兴趣。
让学生先尝试发表意见,初步知道选择买票的方法不同和参加旅游的人数有关。
(1) 成人7位,小孩3位,怎样购票合算?按甲方案购票平均每位多少元?
(2) 成人3位,小孩7位,怎样购票合算?按甲方案购票平均每位多少元?
2.首先,你要明白这两种方案的主要区别是什么?(团体购票与个人购票)
3.怎样计算甲方案平均每位多少元?
4.如果按甲方案购票,下列各种组队情况平均每人多少元?
请大家独立完成作业纸上的表格一。
5.怎样比较两种方案?
6.什么情况下按甲方案买票省钱?(小孩人数多,成人人数少)
什么情况下按乙方案买票省钱?(成人人数多,小孩人数少)
7.除甲乙两种方案以外,还有什么另外的方案吗?
三. 巩固练习,应用规律。
完成练习纸作业。
四. 课堂小结,深化提高。
1. 这堂课我们学了什么?
2. 根据给出的优惠措施,买票时一般情况下要考虑哪些因素?(总人数及团体的构成)
3. 学了这堂课,你有什么体会?
小组合作,分开计算,再把不同方案的计算结果集中在一起,交换检查,观察对比,想想各种情况下用哪种方案省钱。
引导学生得出最合算的方案。
练一练的题目,先让学生判断各种应采用的方案,再计算。
《平均数》教案 篇13
教学目标:
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的计算方法。
教学过程:
一、复习
1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别到入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?
2、学生动手解决,并交流解决的方法。
二、创设问题情景,引导探究。
1、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的.同学分到的糖果多?怎么解决?
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。
2、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队,引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,后比较哪一队高?
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现,并小结:平均数能较好地反映一组数据的总体情况。
三、拓展与应用
说说生活中还有哪些事要通过求平均数来解决一些问题。
四、小结:通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
五、作业练习十一4、5
教学反思:
《平均数》教案 篇14
学习内容:
练习十一13题,教材42页例1
学习目标:
1、掌握平均数的意义和求平均数的方法
2、知道移多补少求平均数的方法
3、会根据数据列出算式求平均数
学习重点:
掌握求平均数的方法
学习难点:
正确计算平均数
学习准备:
课件,小黑板,统计表
学习流程:
一、导入
拿8枝铅笔,指4名同学,要平均分怎样分?
每人2枝,每人手中一样多,叫平均分。2是平均数
二、学习交流
1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图
(1)从图中,你知道了什么信息?
(2)他们四人怎样分才能一样多?
(3)平均分后是多少个?
2、课件展示统计图的变化过程
(1)指名展示
(2)这种方法叫什么?
点拨:移多补少
3、要求平均数,还可以怎样想?
(1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?
14+12+11+15=
(2)平均分成4份,怎么办?
524=
4、归纳
要求平均数,可以先求出( )数,再平均分几份
5、算一算你们小组的平均身高,交流展示求平均数的方法和过程
6、算出各小组的平均体重,说说你们是怎么算的?
三、交流展示
展示自己的学习成果,说清求平均数的`方法和过程
四、达标测评
1、练习十一第2题
(1)什么是最高温度?什么是最低温度
(2)你知道了哪些信息?
(3)填写统计表:本周温度记录
(4)计算出一周平均最高温度和最低温度
(5)说说你是怎么算的?
2、测量小组跳远成绩,求平均数
五、总结
通过这节课的学习活动,你有什么收获?
《平均数》教案 篇15
教学目标:
1.知道平均数的含义和求法。
2.加强学生对平均数在统计学上意义的理解。
3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。
教师重点和难点:理解平均数的含义,掌握求平均数的方法:移多补少的实际意义和应用。
教学过程
一、创设情境、激趣导入
1.谈话引入:(出示幻灯教师家的书橱)现在我的书架上上层有12本书,下层有10本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。
2.感知
(1)学生思考,想象移的过程。
(2)教师操作并问:现在每层都有11本书了,这个11是它们的什么数?
(3)师:像这样把几个不同的数,通过移多补少,先合并再平分等方法,得到的相同数,就是这几个数的平均数。
今天,我们就来认识一下平均数这个新朋友,好吗?
(板书:平均数)
二、探究新知
1.理解含义,探求方法。
提出问题:小组合作按要求叠圆片,第一排叠2个,第二排叠7个;第三排叠3个。
师:看着面前的圆片,你能提出什么问题,
生:我想使每排的圆片同样多?
师:是个好问题!下面我们就以小组为单位来研究怎样才能使三排圆片同样多。先动手活动,再互相说说法。
小组活动讨论。
汇报交流。
生1:我们先从7个里拿出1个给3个,再从7个里拿出2个给2个,这样每排的圆片就同样多了。
生2:我们是以最少的一排2为标准。从7个里拿出5个,再从3个里拿出5个,然后把这6个平均放到三排,每排放2个,和原来2个合起来,每排都是4个,也同样多。
师:不管怎样移,我们都是把个数多的移给个数少的
请你想一想:在刚才移动过程中,有什么相同的规律?
根据学生回答板书:不相等 相等
小结:像这样,在总数不变的前提下,几个不相同的数通过移多补少变得同样多,同样多的那个数就是原来这几个数的平均数。
2.初步应用,内化拓展。
师:刚才同学们用各种方法示出了平均数,请你选择最喜欢的方法,并说说你是怎样想的?(出示:7,3,6,4的平均数是多少?)
生1:我是这样想的(7+3+6+4)+4=5,所以7,3,6,4,的平均数是5,我在加的时候还用了凑十法。
生2:我是从7拿出2给3;6拿出1给4,通过移多补少得出7,3,6,4的平均数是5。
出示幻灯:身高情况
先估计一下平均身高大约是多少?(148,147,149,)算一算,比较一下估计准不准,谁先算好自己上来写到黑板上。
生1:我是这样想的,152拿出3个给146,151拿出2个给147,那么这组数据的平均数就是149。
生2:我是这样想的,这列数从146到153,里面少148与150,148与150的中间数是149,所以这些平均数是149。
三、拓展练习
1.应用一。
小组活动:拿出准备好的调查表,先用计算器求出平均数,再互相交流看法与观点。(调查表有小组成员的体重,身高,家里近几个月的电话费、电费,上周的气温情况等)交流反馈。
《平均数》教案 篇16
教学目标:
1、在具体问题情境中,感受求平均数是解决一些问题的需要,使学生进一步明确平均数的特点,丰富对平均数统计意义的理解和认识。
2、能运用平均数解释简单生活现象,掌握平均数计算方法,学会计算简单的平均数。
3、培养学生在解决实际问题过程中,进一步积累分析和处理数据的方法,发展学生的统计意识和观察。
教学重点:
在解决问题的过程中,理解平均数的意义,探索求平均数的方法,并体会到学习平均数的现实价值。
教学难点:
体会平均数在统计的意义上的理解。
一、创设情境,使学生产生需求
1、凭直觉体验平均数的代表性
师:咱们在美术课上学会了剪各种各样的窗花,上周有个班举行了剪五角星的比赛,这次比赛很激烈,你们想知道这次比赛的结果吗
生:(齐)想!
师:那么这节课老师就想把这次比赛的结果给大家说道说道,让大家帮老师参考参考。到底哪个小组该得冠军?
生:(齐)好的
师:剪纸班分成了四个小组,比赛就在这四个小组进行。首先是1小组,1小组有三个人,我呢就随便从这三个人中抽出了一个人。瞧,他一分钟剪了几个?生:5个。
师:我用这个人的成绩代表1小组1人1分钟剪纸的一般水平,合不合理?如果你是我,你会同意我这样做吗?
生:我不同意。万一其他人剪得比他多,那不是不输了。
师:呵呵,当时老师就让其余2个同学也参加了比赛,有趣的事情是他们的比赛成绩很有意思
(师出示后两次剪纸成绩:5个,5个)
师:还真巧,现在你觉得用几表示1组1分钟剪纸的一般水平比较合理了呢?
生:用5。
师:为什么这回用5就行了?
生:因为每个人都是在1分钟剪了5个,用5来表示他1分钟投中的个数最合适了。
2、通过两组求平均数方法,强化对平均数的概念的理解。
(第2组)师:说得有理!也就是说他们三个人剪纸剪得一样多,用5表示他们这1分钟的剪纸水平很合理。看着大家的剪纸水平产不多,在第二组我就随便点了一个参加比赛。我们也一起来看看
《平均数》教案 篇17
教学目标:
(一)知识目标:
1 、根据给定信息,会利用计算器求一组数据的平均数。
2 、会进行数据的收集、加工与整理。
(二)能力目标:
1 、初步经历数据的收集、加工与整理的过程,发展学生初步的统计意识和数据处理能力。
2 、通过对计算器求平均数的探索活动,培养学生对探索能力。
(三)情感目标:在使用计算器求平均数的探索活动中,鼓励学生重于探索,体验数学活动充满着探索与创造,同时通过互相问合作交流,让所有学生都得到发展,达到共同进步。
教学重点:
1 、探索用计算器求平均数的方法。
2 、用计算器求平均数。
3 、从所给条形图中正确获取信息,并能进行加工与整理。
教学难点:会进行数据的收集、加工与整理。
教学方法:合作探索法
教学过程:
一、引入新课:
在前几节课里我们分别学习了求算术平均数与加权平均数,在计算过程中,你们体会到有什么困难吗?(引入)
二、讲授新课:
1 、探一探:(新6人为小组)
(1)自己课桌的.宽度,并将各组员的估计结果统计出来(精确" 厘米"= w:st="on">0.1厘米)
(2)用计算器求出估计结果的平均值,你是怎么做的?互相交流。
计算器求一组数据平均数的一般步骤是:(以科学计算器为例)
1 、打开计算器,按键进入统计状态。
2 、按键清除机器中原有统计数据。
3 、输入数据;键入第一个数据并按,完成第1个数据的输入,重复上述步骤,直至输入了所有的数据为止。
4 、显示结果
5 、退出;运算结束后,可按退出统计状态进入计算状态;
也可按来清除所有数据进入下一组数据的统计工作
大家的做法与以上步骤一致吗?量一量,与实际是否符合?
三、例题与练习:
例1:观察下图,利用就算器就算上海东在鲨鱼篮球队队员的平均年龄
解:进入统计状态并清除机器中原有数据后,依次按键1 、 6 、 M+ 、 18 、 M+ 、 M+ 、 2 、 1 、 M+ 、 M+ 、 M+ 、 M+ 、 2 、 3 、 M+ 、 M+ 、 M+ 、 2 、 6 、 M+ 、 2 、 9 、 M+ 、 M+ 、 3 、 4 、 M+完成数据的输入,再按键SHIFT 、 1 、 =,则得到结果23.26666667 。
练习:
随堂练习1.2
四、小结:
本节课我们学习了利用计算器求一组数据的平均数。具体的应用步骤有个五个。大家要熟练掌握计算器的应用,这不仅是数学上必须掌握的知识和技能也是其他学科或者生活中应用很广泛的知识。
五、作业:
习题 8.4