认识函数(1)
〖教学目标〗◆1、通过实例,了解函数的概念.◆2、了解函数的三种表示法:(1)解析法;(2)列表法;(3)图象法..◆3、理解函数值的概念.◆4、会在简单情况下,根据函数的表示式求函数的值.〖教学重点与难点〗◆教学重点:函数的概念、表示法等,是今后进一步学习其他函数,以及运用函数模型解决实际问题的基础,因此函数的有关概念是本节的重点.◆教学难点:用图象来表示函数关系涉及数形结合,学生理解它需要一个较长且比较具体的过程,是本节教学的难点.〖教学过程〗教学过程分以下6个环节:创设情境、探究新知、应用新知、课堂练习 、知识整理、布置作业1. 创设情境问题1 小明的哥哥是一名大学生,他利用暑假去一家公司打工,报酬按16元/时计算.设小明的哥哥这个月工作的时间为 时,应得报酬为 元,填写下表:工作时间 (时)15101520……报酬 (元)然后回答下列问题:(1)在上述问题中,哪些是常量?哪些是变量?(常量16,变量 、 )(2)能用 的代数式来表示 的值吗?(能, =16 )教师指出:在这个变化过程中,有两个变量 , ,对 的每一个确定的值, 都有唯一确定的值与它对应.问题2 跳远运动员按一定的起跳姿势,其跳远的距离 (米)与助跑的速度 (米/秒)有关.根据经验,跳远的距离 (0< <10.5) .然后回答下列问题:(1)在上述问题中,哪些是常量?哪些是变量?(常量0.085,变量 、 )(2)计算当 分别为7.5,8,8.5时,相应的跳远距离 是多少(结果保留3个有效数字)?(3)给定一个 的值,你能求出相应的 的值吗?教师指出:在这个变化过程中,有两个变量 , ,对 的每一个确定的值, 都有唯一确定的值与它对应.本环节设计的意图:通过对两个学生熟悉的问题的讨论,既巩固了上一节课中常量、变量的概念,又为本节课学习函数的概念作好准备.2. 探究新知(1)函数的概念在第一个环节的基础上,教师归纳得出函数的概念:一般地,如果对于 的每一个确定的值, 都有唯一确定的值,那么就说 是 的函数, 叫做自变量.例如,上面的问题1中, 是 的函数, 是自变量;问题2中, 是对 的的函数, 是自变量.教师指出:①函数概念的教学中,要着重引导学生分析问题中一对变量之间的依存关系——当其中一个变量确定一个值,另一个变量也相应有一个确定的值.②函数的本质是一种对应关系——映射,由于用映射来定义函数,对初中生来说是难以接受的,所以课本对函数概念采取了比较直观的描述.这种直观的描述也和传统教材有所区别:描述中改变了过去那种“y都有唯一确定的值和它对应”的说法,即避开“对应”的意义.③实际问题中的自变量往往受到条件的约束,它必须满足①代数式有意义;②符合实际.如问题1中自变量 表示一个月工作的时间,因此t不能取负数,也不能大于744;如问题2中自变量 表示助跑的速度 ,它的取值范围为0< <10.5.(2)函数的表示法①解析法:问题1、2中, =16 和 这两个函数用等式来表示,这种表示函数关系的等式,叫做函数解析式,简称函数式.用函数解析式表示函数的方法也叫解析法.②列表法:有时把自变量 的一系列值和函数 的对应值列成一个表.这种表示函数关系的方法是列表法.如表(图7-2)表示的是一年内某城市月份与平均气温的函数关系.