北师大版小学数学六年级上册《圆的认识》教案

2022-11-07

北师大版小学数学六年级上册《圆的认识》教案 篇1

  教学目标:

  1.知识目标:掌握圆各部分名称以及圆的特征;会用圆规画圆。

  2.能力目标:借助动手操作活动,培养学生运用所学知识解决实际问题的能力。

  3.情感目标:渗透知识来源于实践、学习的目的在于应用的思想。

  教学方法:

  导练法、迁移法、例证法

  教学准备:

  多媒体课件、圆规、直尺等

  教学过程:

  一、结合实际、谈话引入新课。

  谈话引入:今天非常高兴能和同学们一起来学习、

  研究一个数学问题。我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?

  师:看来大家平时非留心观察。课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?

  师:把它们举起来,大家互相看一看。回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)

  师:同学们观察得真仔细。圆的边是弯曲的,跟以

  前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。(板书课题)

  生举例

  师强调——指物品的表面

  圆是没有棱角的,边是弯的;圆的边是一条曲线。

  二、引导探究新知。

  1.导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。最后看看谁的收获多。(1分钟)

  2.师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。

  3.展示探究结果。结合多媒体课件辅助,完整认识圆的特征(8分钟)

  谁来告诉老师,你有哪些新发现?

  那是什么原因呢?

  你怎样发现的?

  结合学生交流、汇报探究结果,及时引导梳理。主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。

  4.学习画圆(5分钟)。

  你是如何画圆的?

  课件展示如何画圆。然后学生动手练习,并强调画圆时应该注意些什么。——揭示圆大小

  位置的确定

  学校要修建一个直径是20米的花坛,你能帮学校画出这个圆吗?生演示操作

  三、应用拓展。

  1.基本练习(4分钟)。

  〈1〉投影出示

  找出下列圆的半径、直径。

  〈2〉半径、直径的相关计算。

  〈3〉概念的判断和识别。

  2.应用练习。(10分钟)

  〈1〉车轮为什么做成圆形的,车轴应安装在哪?

  如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示

  〈2〉你能用今天学习的圆的知识去解释一些生活现象吗

  (举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?

  平静的湖面扔一小石子,会有什么变化?为什么?

  月饼为一般都做成圆形的,为什么?)

  看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

  〈3〉同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个谜语。有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面)

  师:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的范围有多大好吗?

  用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的范围是一个圆,拴羊的绳子与这个圆有什么关系吗?

  (是这个圆的半径)钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),这说明圆的半径与圆心与圆有什么关系呢?

  圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。

  四、总结全课(3分钟)

  1.质疑

  (篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)

  2.这节课你都学会了什么?

  不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。(句号是圆形的)

  延伸

  1.用圆作画。

  2.谈谈我眼中的圆。

  板书设计:

  圆的认识——平面曲线图形

  圆心(o)圆中心一点,确定圆的位置

  半径(r)线段

  连接圆心到圆上任意一点,确定圆的大小,长度都相等〈在同一个圆里〉

  直径(d)线段,通过圆心,两端都在圆上,长度都相等。〈在同一个圆里〉

  半径和直径的关系d=2r

  教学反思

  要让学生明白只有在同圆或等圆内,所有的半径才相等;所有的直径才相等;半径才是直径的一半,直径才是半径的2倍。

北师大版小学数学六年级上册《圆的认识》教案 篇2

  教学目标:

  知识与技能

  (1)认识圆,知道圆的各部分名称。

  (2)使学生掌握圆的特征,理解和掌握在同一个圆里,半径和直径的关系,能在同一个圆里,找出任意的半径和直径并且会自主完成已知半径求直径或已知直径求半径的题目。

  (3)使学生初步学会用圆规画圆。能用圆规画出已知半径大小的圆或已知直径大小的圆。

  过程与方法

  (1)经历动手操作的活动过程,培养学生作图能力。

  (2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。

  (3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。

  情感、态度与价值观

  通过对圆的认识,感受到美源于生活,体验圆与日常生活密切相关,感悟数学知识的魅力。

  教学目标:

  1.通过画一画、折一折、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。

  2.了解、掌握多种画圆的方法,并初步学会用圆规画圆。

  3.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。

  教学重点:

  探索圆的各部分名称、特征和关系。

  教学难点:

  通过实际的动手操作体会圆的特征。

  教学过程:

  一、整体感知圆

  1.出示幻灯:生活中的圆

  摄影作品,在这些美丽的图片中你们发现了什么图形?生活中你在哪见过圆?

  2.揭示课题:圆无处不在,这节课我们就来认识它。

  板书:圆的认识

  3.同学们喜欢玩套圈的游戏吗?现在就来试试?

  我这有一个玩具,要求你只能站在距离它三米远的地方扔圈,你可以站在哪里?

  我们用三厘米代表三米,你能在本上标出你所在的位置吗?

  2.实投学生成果(由画几个点到多点,直到圆)

  问:站在这几点都可以吗,为什么?只能站在这几点上吗?

  出现圆后问,还有地方站吗?

  3.课件演示

  师:那么到底可以站在哪?(圆上任意一点)

  圆上这样的点有多少个?

  二、操作中认识圆

  1.屏幕上有一个圆,同学们能利用现有的工具制造一个圆吗?

  2.学生画圆,师巡视

  3.汇报不同画圆的方法(先找用圆形工具画的汇报)

  拿线绳画的黑板演示

  谈话:这位同学拿这么长的绳子在黑板上画了这么大的一个圆,如果我想在操场上画个大圆怎么办呢?

  圆规画的实投展示

  4.总结圆规画圆方法

  5.学生练习圆规画几个圆

  既然我们可以借助圆形工具来画圆,人们为什么还会发明圆规呢?

  6.观察自己所画的圆,除了一条封闭的曲线还有什么?(点儿)

  给它取个名字——圆心(如果学生能说就让学生说)用字母O表示

  7.拿出手中的圆纸片,你们有办法确定这个圆的圆心吗?

  学生动手折

  问:除了圆心你们还发现了什么?(折痕)

  你发现的折痕是什么样子的。

  师:谁愿意到前面介绍自己的发现?揭示直径半径定义

  你能在圆上画出直径和半径吗?

  在自己所画的圆上标出圆心、画出半径和直径

  三、交流探究圆

  圆心和半径到底有什么作用呢?画一画就知道了

  1、用圆规在本上画出几个不同的圆,看谁画得漂亮。

  2、投影展示

  问:你们画得圆有的在上、有的在下、有的偏左有的偏右,什么决定的?

  学生汇报,圆怎么这么听话呢

  师小结:圆心决定圆的位置,怪不得人家叫圆心呢

  这些圆大小各异,怎么画就能让他有大有小?

  小结:圆的半径决定圆的大小(圆规两脚间距离)

  3、师:半径的本事不小,想不想知道半径还有什么特征?是我直接告诉你们还是自己研究?

  那就结合老师的提示利用手中的工具小组共同研究吧

  4.研究提示

  同一个圆内,半径与直径有什么关系?

  同一个圆内,半径有多少条?

  同一个圆内,半径的长度都相等吗?

  汇报

  同圆直径是半径的2倍 板书d=2r

  问:你怎么知道的?

  同圆的半径有无数条,为什么?(圆上有无数的点、折痕中发现)

  同圆的半径有无数条,那么直径有多少呢?

  板书:同圆内半径有无数条。

  同圆的半径都相等,为什么?(通过测量,通过推理)

  同圆的半径都相等,那么直径都相等吗?

  板书:同圆内半径都相等。

  所以古人说:圆,一中同长也

  这个一中指什么?同长指什么?

  边看幻灯边读这句话。

  一中同长的圆在生活中应用很广泛

  4、车轮的外形为什么做成圆的,你能解释吗?

  为什么不把车轮做成这些形状的?(出示正多边形图片)

  四、比较中深化圆的认识

  1.由正三角形到正十二边形,有什么变化?

  2.想象,正100边形会是什么样子?(接近圆,但不是圆)

  正3072边形呢?(更接近圆,但还不是圆)

  到底多少边的时候就是圆了呢?

  3、《周髀算经》中有这样一个记载,说“圆出于方,方出于矩”,所谓圆出于方,就是说最初的圆形并不是用现在的这种圆规画出来的,而是由正方形不断地切割而来的现在,如果告诉你正方形的边长是6厘米,你能获得关于圆的哪些信息?

  4、阴阳太极图。

  师:想知道这幅图是怎么构成的吗它是用一个大圆和两个同样大的小圆组合而成的现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?

  5、下面我们还将面临3个实际问题的挑战,同学们敢接受挑战吗?

  问题1、你能测量出1圆硬币的直径吗?(参考用工具:直尺,一副三角板)

  问题2、你能在地面上画一个半径1米的圆吗?(参考用工具:绳子、粉笔)

  问题3、车轮都做成圆的,车轴装在哪里?为什么?(参考用工具:自行车)

  课下每个同学选择一个自己最感兴趣的课题来研究。

  五、总结

  学完这节课,同学们还有什么想法吗?圆里面藏着无穷无尽的奥秘,等待着同学们去研究和发现!愿我们的学习和生活都像圆那样完美!

北师大版小学数学六年级上册《圆的认识》教案 篇3

  教学内容:

  义务教育课程标准实验教科书(北师大版)数学六年级上册第一单元《圆的认识(一)》,在课本的2——5页。

  教学目标:

  知识与技能:结合生活实际,通过观察、操作等活动认识圆,并认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。

  过程与方法:结合生活实际,通过观察、操作、想象等活动,认识圆及圆的一些特征,发展学生的空间观念。

  情感态度价值观:结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。

  教学重点:

  在观察和操作中体会圆的特征,知道直径和半径的概念。

  教学难点:

  用圆规画圆。

  课前准备:

  课件

  教学过程:

  一、创设情景感知圆

  师:我本想让大家做一个套圈游戏,但对于大家站在什么位置参与游戏更公平,老师一直没有想好,请大家帮我参谋一下。(课件出示三种游戏方式,触控笔画出同学与小旗标志之间的距离。)

  导入:为什么圆会有这么大的优点呢?让我们一起来探寻圆的奥秘吧!

  板书课题:圆的认识

  学生对于三种游戏方式进行评价,并说原因。

  二、互动探究认识圆

  1.欣赏图形。

  (课件出示生活中的圆,同时用触控笔“抽”出圆形)

  师:圆和以前学过的图形有什么不同呢?(出示以前学过的图形)

  (出示一个椭圆和一个凹凸不平的圆)问:这是圆吗?为什么?

  2.尝试画圆。

  (1)(实物投影仪出示学生画出的失败作品和成功作品)师:猜一猜,为什么有些圆会“咧着嘴”呢?

  (2)(实物投影仪)老师示范画圆。

  3.认识圆各部分的名称。

  老师在白板上用圆规、直尺等工具演示画圆、圆心、半径、直径及用字母表示的方式。

  4.探究圆的特征。

  (1)画:在刚才自己画的较成功的一个圆中继续画3条半径、3条直径。

  想:a.在同一个圆里可以画多少条半径,多少条直径? b.在同一个圆里半径的长度都相等吗?直径呢?怎么发现的?

  (2)画:a.以点A为圆心画两个大小不同的圆;b.在另外一个地方画两个半径都是2厘米的圆。

  想:圆的位置与什么有关系?圆的大小与什么有关系?

  5.首尾呼应

  师:在刚上课的套圈游戏中,小旗标志在圆的什么位置?每个同学站在圆的什么位置?小旗标志与同学之间的距离是什么?能解释为什么设计成圆形的队形比较公平吗?

  三、巩固练习拓展圆:(闯关练习)

  (第一关用白板遮盖的方式逐一呈现练习题,在学生回答出结果时,用触控笔及时给出结果。第二关演示圆形、正方形、椭圆滚动过程及中心点留下的痕迹。)

  四、史料再现升华圆

  (调用电子白板上的“科技素材”)

  五、全课总结理知识

  通过这节课的学习,你有什么收获?

  感受圆的历史。

  六、课后思考;

  如果要在操场上画一个很大的圆,你有什么方法吗?

  谈收获。

  板书设计:

  圆心  O    位置

  半径  r     圆的大小

  直径  d

北师大版小学数学六年级上册《圆的认识》教案 篇4

  一、教学内容:

  人教版《义务教育课程标准实验教科书.数学》六年级上册56—58页

  二、教学目标

  1、在具体的情景中使学生认识圆,知道圆各部分的名称。

  2、通过观察,操作等活动探究圆的特征,理解在同一圆内直径和半径的关系。

  3、学会使用圆规,掌握用圆规画圆的方法。

  4、在观察操作过程中培养学生的创新意识和自主探究能力。发展学生的空间观念。

  三、教学重难

  教学重点:认识圆的特征,学会用圆规画圆。

  教学难点:明确圆心与圆的位置之间的关系,半径与直径、半径与圆的大小之间的关系。

  四、教学具准备

  教具准备:多媒体课件、圆规、直尺、圆片。

  学具准备:圆规、直尺、圆片。

  教学过程

  五、教学过程

  (一)情景创设,激情导入

  同学们喜欢骑自行车吗?(喜欢)那么你们一定知道自行车车轮是什么形状的?为什么车轮要设计成圆形?(出示图片)

  为什么车轮设计成圆呢?这里面有什么奥妙呢?学了今天的内容大家就会明白的。这节课我们就走进圆的世界去探寻其中的奥妙。板书课题:圆的认识

  [设计意图:通过生活中实际例子引入课题,一方面引起学生的学习兴趣,另一方面为学习新知识做了铺垫,从思想上吸引了学生主动参与学习的活动。

  (二)动手操作,探究新知

  1、联系生活,理解概念

  (1)师:除了车轮是圆形的,同学们在日常生活中还看见过哪些物体是圆形的?

  (2)学生举例。

  (3)老师也收集了一些关于圆的图片:请大家看屏幕(课件演示)。

  (4)师:同学们我们不仅用圆来装扮我们的生活,还将圆的一些特征巧妙的用于生活。

  (三)操作探究,认识圆各部分的名称及圆的特征。

  1、折一折,认识圆心。

  (1)让学生用老师准备好的圆形图片,对折后打开,换个方向后再对折打开,看有几条折痕,相交吗?再折几次,说说你发现了什么?学生相互交流自己的发现。(所有的折痕都相交于一点,这一点在圆的中心)

  (2)教师揭示:这一点我们把它叫做圆心,用字母“ο”表示。

  (3)课件演示后,学生自己在圆上标出圆心。

  2、连一连,认识半径、直径

  (1)连接圆心和圆上任意一点的线段叫做圆的半径,用字母“γ”表示。

  (2)课件演示。

  (3)让学生找出定义中的关键词

  (4)教师解释圆上、圆内、圆外

  (5)学生在自己的圆里画出一条半径,并用字母标出。

  (6)想一想:同一个圆里能画出多少条半径?这些半径的长度会有什么关系呢?学生通过思考、讨论和实际测量认识到在同一个圆里有无数条半径,所有的半径的长度都相等。

  (7)通过圆心并且两端都在圆上的线段叫做圆的直径,用字母“d”表示

  (8)课件演示

  (9)学生互相指一指直径,并在自己的圆里画出一条直径。

  (10)想一想:同一个圆里有多少条直径,所有的直径的长度都相等吗?学生通过思考、讨论和实际测量认识到在同一个圆里有无数条直径,所有的直径的长度都相等。

  3、比一比,掌握直径与半径的关系

  (1)刚才我们认识了圆心、半径、直径以及半径、直径的特征,那么在同一个圆里半径和直径之间会有什么关系呢?

  (2)学生自己先动手测量、比较,然后小组探讨交流。

  (3)小组代表发言,小组一:我们通过测量发现直径的长度是半径的2倍,小组二:我们把直径对折过去发现刚好是两个半径的长度,所以认为直径是半径的2倍。

  (4)教师归纳小结:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示是:d=2r或r=d/2

  [设计意图:这一环节主要以动手操作为主线,通过折一折、量一量、指一指、比一比等活动,让学生自主参与,合作探究、分组交流,给予学生充分展示自我和展开探究活动的空间,让学生在自主探究中发现新知,学生学习的过程是感知的过程,是体验的过程,是感悟的过程,学生在感知、体验、感悟中发现新知,掌握新知。]

  (四)动手操作,掌握圆的画法

  1、认识圆规,教师介绍圆规各部分的名称。

  2、教师在黑板上示范画圆

  3、学生用圆规画圆,指名学生演示画圆,并让学生边演示边归纳画圆的步骤和方法。

  4、画一个半径是3厘米的圆,并用字母标出圆心、半径和直径。画完后同桌互相检验。

  5、按要求画圆,并观察你发现了什么?(画3个同心圆,3个大小不等的非同心圆)让学生通过观察、讨论、比较归纳:圆心确定圆的位置,半径决定圆的大小。

  [设计意图:老师先示范画圆接着让学生试着用圆规画圆,画圆之后,让学生共同概括规律,是从感性到理性的一种提高。同时让学生反复画圆之后,结合画圆的过程体会圆心和半径的作用,便于学生深化对圆心和半径的认识。]

  六、实践应用,深化知识

  (1)、辨一辨。(对的在括号里打“√”,错的在括号里打“×”)

  1、两端都在圆上的线段叫做直径。( )

  2、画一个直径为4厘米的圆,圆规的两脚之间的距离应是4厘米。( )

  3、半径2厘米的圆比半径1.5厘米的圆大。( )

  4、圆的半径是射线。 ( )

  5、圆心到圆上任意一点的距离都相等。 ( )

  (2)、回放上课时车轮为什么是圆形的动画,谁能应用今天所学的知识解释车轮为什么要做成圆形?为什么车轴要装在圆心上?

  (3)、下面投球比赛中,那种游戏方式最公平?

  队列3

  队列2

  队列1

  [设计意图:通过拓展训练,进一步巩固所学的知识,同时了解学生对知识掌握情况。让学生亲眼看见圆的知识的应用,真正体会到数学知识就在身边。]

  七、总结新知 畅谈收获

  本节课你学习了什么知识?你有什么收获?

  师:其实生活中的很多现象都象圆一样蕴含着丰富的数学规律,需要我们在不断的探索中来认识它,理解它,应用它。老师相信你们在今后的学习中,经过自己的实践,一定会探索出大自然中的更多奥妙。

  板书设计:

  圆的认识

  圆 心 0 在同圆内:

  半 径 r r=d/2 或

  直 径 d d=2r

北师大版小学数学六年级上册《圆的认识》教案 篇5

  本课使用《 新世纪小学数学教材六年级上册》

  【课前慎思】

  《圆的认识》一直是小学高年级数学的教学内容,几乎所有小学数学教学领域的名师大家都用过这节课来“吟诗作画”,各领风骚;后生新秀们更是频频用这节课来“小试牛刀”,异彩纷呈。

  我在欣赏品味之余,发现我们对于“圆的认识”这节课教学内容的处理,主要存在以下三个问题:第一,注重组织学生通过折叠、测量、比对等操作活动来发现圆的特征,不重视通过推理、想象、思辨等思维活动来概括出圆的特征;第二,注重让学生学会“用圆规画圆”,不重视让学生思考“为什么用圆规可以画出圆”;第三,注重数学史料的文化点缀,不重视数学史料文化功能的挖掘。

  我思考——“圆的认识”这节课究竟要讲什么?

  我思考——“特征”是指“一事物区别于他事物的特别显著的征象、标志。”(《辞海》)那么,圆的特征究竟是什么?曲线围成、没有角、半径是直径的一半,是不是特征?“一中同长”的特征是不是需要下发空白研究报告,组织学生小组合作研究?这是不是为了“研究报告”而组织研究?这是不是教学上的形式主义?

  我思考——半径和直径是不是应该“浓墨重彩”去渲染? “圆”的概念都没有给出,是否需要咬文嚼字地概括出“半径”和“直径”的概念?揭示两者概念后,让学生从一个圆内各个不同的线段中挑出“半径”和“直径”,有没有哪位老师见过学生有错?学生都不会有错的活动,要不要组织?这样的活动是不是教者自作多情、自娱自乐?

  我思考——半径和直径的关系是不是教学难点,要不要研究,是否“顾名思义”就可以理解?得出关系后的填表练习,究竟是练习的两者关系,还是练习的乘以2和除以2的口算?我们是不是总是好为人师,以为我们不讲学生就不会?是的,熟能生巧,但熟还能生厌,那熟是不是还能生笨呢?现在的学生在课堂上是不是很少“不懂”装“懂”,而更多的是不是精明地“懂”装“不懂”?

  我思考——量出半径都相等,就科学、深刻吗?在一个圆内,半径和直径真的画不完吗?画不完就能说明“半径有无数条” 吗? “半径都相等”和“直径都相等”要不要加上前提条件“在同一个圆中或等圆中”?我们说“正常人的两条腿是一样长的”,怎么不加上前提条件“在同一个人身上”?以后再说“正方形的四条边都相等”,还要不要加上“在同一个正方形中”呢?数学上的严谨就是这样的吗?要加上前提条件“在同一个圆中或等圆中”,这是不是教学内容上的形式主义?

  我思考——圆的画法是应该教,以促进学生更好地学,但应该一、二、三地教吗?是不是在学生容易疏忽的两个地方“手拿住哪里”、“两脚之间的距离是直径还是半径”点破就可以了?学生抑或老师画出的不圆,是否就该随手擦掉?那些“不圆”的作品,是不是课堂中的生命体?是否应该珍惜?

  我思考—— 我们的小学数学教学是否应该不仅关注“是什么”和“怎样做”,还应该引导学生去探究“为什么”和“为什么这样做”?这样是不是才凸显出“数学是思维的体操”这一学科特色?是不是应该带领学生经历从现象到本质的探究过程,促使学生养成研究问题的良好意识?“问题是数学的心脏”,我们数学老师是否可以给学生一个问题模式,让学生“知道怎样思维”,让学生掌握作为一种“非言语程序性知识”的思维?

  我思考——“圆”的意蕴实在是丰富,借着这么“圆满”的素材,我们是否可以在培养学生批判思维和突破常规的创新思维上做些文章,引导学生思考“一定这样吗”?柳暗花明、曲径通幽、殊途同归的心理体验,是否更有利于学生的可持续发展?

  我思考……

  经过一段时间的慎思明辨,我认识到“圆”这一节课应该讲的有价值的东西实在是太多,有舍才有得,一课一得足矣!

  【教学目标】

  1. 认识圆的特征,初步学会画圆,发展空间观念。

  2. 在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。

  【教学过程】

  一、情景中创造“圆”

  1.课件创设问题情景。

  2.学生表达自己的想法。

  3.展示学生的作品。

  二、追问中初识“圆”

  1.结合学生作品,追问:是什么?为什么?

  2.课件动画演示。

  3.研讨圆的特征。学生说,古人说。

  4.质疑古人说法。“大方无隅”。

  三、画圆中感受“圆”

  1. 画一个直径为4厘米的圆,并标上半径、直径。

  2.从不圆中,感悟圆的画法。

  3. 追问“为何这样做?”

  四、球场上解释“圆”

  1.出示篮球场。

  2.播放篮球开赛录像。

  3.探讨大圆的画法。

  4.追问大圆的画法。

  五、回归情景突破“圆”

  1.出示爱因斯坦的名言:“我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。”

  2.追问中提升认识。

  六、课后延伸研究“圆”

  1.依一天时间顺序,配乐出示各种各样的圆。

  2.让学生选择感兴趣的追问研究。

  【试教后的反思】

  非常成功,非常享受!已经拖课了,学生还是不愿意下课。

  师父张兴华满意地对我们几个徒弟说:“应龙的这节课,我就七个字——浑然大气铸成圆!”

  认识决定行为。已有的会成为包袱。备课时,我就觉得半径、直径不要像原来那样教,一问学生“这是一个多大的圆”,学生就会说出“半径、直径”。课堂事实也是这样,就让自己不再思考了。试教后一反思,才发现“宝物在哪儿呢?”是个更妙的问题,首先是回答了探讨的问题,其次是凸显了圆心定位置,半径定大小。现在想来,这样问,味道好极了!

  正像电影《阿甘正传》中,阿甘妈妈对阿甘说的:“要想往前走,就得甩掉过去。”是啊,我今天的教法不就是想“甩掉过去”吗?但甩掉别人的过去容易,甩掉自己的过去就难了。否定别人容易,否定自己难。我是这样,听课老师会不会也是这样,而不肯接受我这节课呢?应该坦荡荡,何必长戚戚,“我的地盘我作主”,30年后再说吧。哦,我不该这样想,数学研究者往往是孤傲的,认为只有自己发现的“1”才是对的,我应该再思考,再否定自己,就像硬汉海明威说的“比别人优秀并无任何高贵之处。真正的高贵在于超越从前的自我”。

  顿悟:几何画板上显示“正多边形和圆的关系”应该从正六边形开始,这样暗合了刘徽割圆术也是从正六边形开始的,并且解决了几何画板上正三角形不正、看着不舒服的问题,还解决了与前面研究正三角形、正方形、正五边形、正六边形“一中同长”重复的问题。哈哈,反思真好!

  课上学生画出的“不圆”的资源化运用,感觉真好:有方法上的启迪、情感上的善意、借走橡皮的回应,那意境真有林黛玉说的“留得残荷听雨声”的美妙。

  在完成了为什么没有规矩也画成了圆的追问,我说——是啊,圆心只能“一中”,半径一定“同长”。当我们真正理解了祖先的“圆,一中同长也”,才知道以前听说的“圆心”、“半径” 是多么重要的两个词啊!——之后,看到学生闪亮的眼睛,我心里真舒畅。这样不就把经验、直观与抽象结合起来了吗?数学的抽象首先是一个过程,其次不就是建立一套术语概念系统吗?

  …………

  整体感受——在学生需要教的时候再教,效果就是好。看来我说“教是因为需要教”,没错!

  自己以前也教过《圆的认识》,为什么没有今天这么享受呢?莫名地,我想起《老子》第四十五章:“大成若缺,其用不弊。大盈若冲,其用不穷。大直若屈,大巧若拙,大辩若讷。……”这几句话的意思是:完全做成的东西,看上去好像缺了些什么,但用起来却一点也不差。完全装满水的容器,看上去好像是空的,但用起来却一点也不少。非常直的东西看上去却好像是弯的,大的机巧看上去倒好像很笨拙,特别善辩的人看上去倒好像不会说话。

  那,我“成”在哪呢?在没有增加新知识点的情况下,上得学生不愿意下课。让学生体验到不同现象背后的本质是一样的,让学生体验到认识事物“特征”的价值,让学生认识圆的“规矩”的同时感受了研究问题的“规矩”,让学生体验到追问“为什么”是一件很有意味的事情……爱因斯坦曾经说过这样的话:“用专业知识教育人是不够的,通过专业教育,学生可以成为一种有用的机器,但不能成为和谐发展的人。要使学生对价值(社会伦理准则)有了理解并产生出热烈的情感,那才是最基本的。”

  那,我“缺”在哪呢? 这一节课,对原来所重视的基础知识和基本技能淡化了,学生发展的情况究竟如何?

  以前,我教《圆的认识》时,总是觉得这不能丢,那也不敢掉,把自己扣牢在自己和他人一起画就的小圆里……

  哈哈哈,现在的我真是在理想“圆”里!

  为什么以前的我没能、没敢这么上?教学的能力不到, 教学的勇气不够,教学的追求没有……

  为什么今天的我能这么上、敢这么上?课程改革的深入,百花齐放的氛围……大抵还源于自己对自己和他人教育实践的过程和结果的意义和价值的哲学之思。

  “花未全开月未圆”,大成“有”缺。革命尚未成功,同志仍需努力!

  拖课了,总是不好,如何在40分钟内和学生交流?要舍什么?

  这节课,多处引经据典,是否过“度”了?“度”是几处呢?数学味淡了?那我们的课堂是为了学生的发展,还是为了上出一堂“数学的课”?话又说回来,哪一处又是与“数学”无关呢?是否只是“顺手一投枪”(鲁迅语)?那老师“顺手”多了,学生是否会目不暇接、“审美疲劳”?

  华应龙 :《圆的认识》课堂实录

  整理:云山 雪燕子

  【教学目标】

  1. 认识圆的特征,初步学会画圆,发展空间观念。

  2. 在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。

  【教学过程】

  师生问好。

  一、情景中创造“圆”

  师:同学们请看题目:

  “小明参加奥林匹克寻宝活动,得到 一张纸条,纸条上面写的是:宝物距离左脚三米。”宝物可能在哪呢?

  生思考

  师:有想法,你的桌子上有张白纸,上面有个红点,你们找到了吗?

  生:找到了

  师:那个红点代表的是小明的左脚,如果用纸上的1厘米代表实际距离的1米的话,能 把你的想法在纸上表示出来吗?想,开始。

  学生动手实践,师巡视。

  师:真佩服,真佩服,我们西安的小朋友真棒!会动脑子,。除了你表示的那个点,还有其他可能吗?

  生思考。

  师:好,很多同学都想好了,我们来看屏幕。红点代表小明的左脚,[课件演示:在红点右侧找出一距离红点3米的点]刚才我看到,很多同学都找到了这个点,找到的同学举手。

  生纷纷举手。

  师:除了这一点,刚才我看到,还有的同学找到了这一点。[课件演示:在红点左侧找出一个距离红点3米的点]还有这一点,这一点[课件演示:分别在红点上下的距离为3米的点]我看有的同学还画了这些斜点,是吗?还有其他的可能吗?[课件演示:越来越密,最后连成了圆]

  师:想到圆的举手。哇,真佩服,刚才我看有的同学都画出圆了,是吗?看屏幕,这是什么?认识吗?

  生:认识,圆

  二、追问中初识“圆”

  师:那宝物可能在哪里呢?

  生:在圆的范围内,在圆的这条线上。

  师:你刚才的说法很有意思,先说“在圆的范围内”,后来改成“在圆的这条线上”。如果在范围内,距离不够3米,如果在圆上,距离够3米。那你们怎么告诉小明呢?如果宝物在圆上,怎么表达告诉小明呢?

  生:可以这样对小明说:“以你的左脚为圆心,画一个半径为3米的圆。在这个圆的周厂上取任意一点,这个地方也许就是埋宝物的地方”。

  师:同意吗?真厉害。刚才她说到两个词,一个是以左脚为“圆心”还有一个是半径多少?[板书:圆心,半径]

  生:3米

  师:就用上这两个词,就很准确地表达出了圆的位置,对吧。如果只说以左脚为圆心,不说半径3米,告诉小明,宝物啊就在 以你左脚为圆心的圆上。行不行?

  生:不行

  师:为什么不行?

  生:如果只告诉左脚是圆心的话,那圆可以无限延伸。就没法掌握圆的周长是多少。

  师:那个圆可以无限延伸。我理解他的意思了,你理解了吗?

  生:理解了。

  师:也就是说圆的半径没定,圆的大小没定。对不对。

  生:对

  师:这样的话,可以画多少个圆,可以无限延伸,对不对。那如果不说“以左脚为圆心”行不行?

  生:不行,那样圆的位置就可以无限延伸,。

  师:除了说“以左脚为圆心,半径为3米的圆上”还可以怎么说?生活中听说过吗?

  生:也可以说直径是6米。

  师:同意吗?

  生:同意。

  师:可以说:以左脚为圆心,直径为——”

  生:6米

  师:对。这个“直径:也能表达圆的大小。[板书:直径]

  师:为什么 宝物可能所在的位置会是一个圆呢?

  生:因为在一个圆内,所有的 半径都相等。

  师:哦,他说了这个。什么 宝物可能所在的位置会是一个圆呢?

  生:因为以他的左脚为圆心,他可以随便走一圈,就变成圆了。

  师:哦,可以随便走一圈。方向没有定,是吧。这也是另外一个角度看问题。刚才两个同学说的都很有道理,不过要很好的说明这个问题我们可以用”圆的特点“来说明。你觉得圆有特点呢?

  生:我觉得圆有无数条半径,无数条直径。

  生:圆心到圆上任意一点的距离都是相等的。

  师:我们说图形的特点的时候一般要和以前学过的图形作比较。一句话,有比较才有结论。[课件:三角形,正方形等]以前我们学过三角形,正方形等。我们以前说图形的时候往往从“边”和“角”两个角度来说明,那你看,从 边和角的角度来看,圆有什么特点呢?

  生:它既没有棱也没有角。

  师:同意吗?同意的请点点头,她说圆没有棱也没有角,对吗?

  生:对

  师:没有棱是什么意思?

  生:没有棱是说它没有边,它不象正方形有4条边。

  师追问:那它是没有边吗?

  生:不是,有边。

  师:有边,几条边?

  生:1条。

  师:那你们说圆的边和我们以前学过的图形有什么不同?

  生:以前学过的图形的边是直线,而圆的边是曲线构成的。

  师:同意?

  生:同意。

  师:看来我们从角来看,圆是没有角的。从边上来看,圆有没有边?

  生:有!

  师:有,几条边?

  生:一条边。

  师:这是圆很特别的地方。其他图形,最起码有3条边,而圆呢?只有一条边。并且它的边怎样?

  生:是曲线的。

  师:是曲线的。其他的是直线或者说是线段围成的。

  师:圆,我们从边和角来看是这样的特点。我们的祖先墨子说:圆一中同长也[板书]知道这句话什么意思吗?一中指什么?

  生:圆心

  师:同长,什么同长?

  生:半径

  师:半径同长,有人说直径也同长。同意古人说的话吗?

  生:同意。

  师:“圆,一中同长也”。难道说正三角形,正四边形正五边行不是“一中同长”吗?

  认为是的举手,认为不是的举手 。为什么不是呢?

  生:这些图形中心到角的距离比到边的距离要长一些。上前面指着说。

  师:这些图形是不是一中同长?

  生:不是。

  师,不是的理由就是:从这个中心到边上的点跟到顶点的点的距离就不一样。那有没有一样的?正三角形里有几条一样的?

  生:3条。

  师:正方形呢?

  生:4条。

  师:正五边行呢?

  生:5条。

  师:正六边行?

  生:6条。

  师指圆:

  生:无数条。

  师:无数条?[板书]为什么是无数条?

  生:圆心到圆上的半径都相等。所以有无数条。

  师:我们解决的是什么问题?

  生:我们解决的问题是相等的半径有无数条。

  师:为什么有无数条?

  生:圆心到圆上的距离都相等。

  师:圆周上有多少个点?

  生:无数个。

  师:这些点和圆心连起来当然就有无数条,是吧。圆周上有无数点,请问:从这到这有多少个点?[指圆弧线]

  生:无数个。

  师:这些图形一中同长的条数是有限的,而圆从圆心到圆上的距离都是一样的。古人说的“圆,一中同长”你认同吗?

  生:认同。

  师:经过我们讨论更认同了,不过刚才有同学说圆是没有角的。圆只有1条边,边是曲线。究竟哪个更重要呢?我们来看[课件出示椭圆]这个图形是不是没有角的。是不是只有1条边,边是曲线。它是圆吗?它一中同长吗?所以说一中同长是圆最重要的特征。墨子的这一发现比西方早了1000多年,谁能学古人的样子读一读??

  生读。

  师:圆有什么特点?

  生:一中同长。

  师:我们来看小明的宝藏在什么范围?我们第2个问题解决完了吗?

  三、 画圆中感受“圆”

  1从不圆中,感悟圆的画法。

  师:孩子们,想自己画一个圆吗? 画圆用什么?

  生:用圆规。

  师:古人说:没有规矩,不成方圆。大家看,规就是圆规、矩就是带着直角的尺。规是用来画圆的,矩是用来画方的。

  师:既然大家都回会画?画一个半径为4厘米的圆

  (生自己画圆)

  师:画好了吗?

  (展示学生的作品,学生此时的作品都不怎么标准)

  师:从这些圆里,我们是否可以想象,它们是怎样创造出来的?

  师:看来画圆并不是一件很容易的事,小组里交流一下,怎样画圆才能标准?

  (生小组交流)

  师:大家交流完了,好了。那现在你们说一下是怎么画的?

  生:用圆规

  师:了解圆规的发展,现在圆规的优点在哪里?

  师:用这样的圆规画圆,手必须拿着哪,圆规就不动了?

  生:拿着圆规的头,不能捏着它的两条腿。

  师:对,就是拿住圆规的头,而不能捏着它的两条腿。

  *(课件出示:再画:一个直径是4厘米的圆)

  生画,师巡视

  师:哎呀,老师在巡视时,我发现你们画的较规范的圆,大小不一样,为什么?

  生:这里要我们画的是直径4厘米的圆。

  师:你知道什么是直径吗?顾名思义,它和半径是什么关系?

  生:直径是半径的2倍。

  师:订好距离,就是圆的半径。

  师:孩子们,谁愿意上来画一画。这个机会老师留着了。

  师:展示画圆,故意出现破绽一:没有“圆”上?破绽二:没有画完?

  生:两脚之间距离变化了;粗细不均匀;

  师:你们真仔细,我把汗都画出来了。

  2标上半径、直径。

  师:学生标直径和半径;你说在画半径时特别注意什么?

  生:在画半径时特别注意对齐圆的圆心,画完后表上字母r;

  师:半径有两个端点,一个端点在(圆)上,另一个端点呢?

  生:圆心;

  师:再画一条直径;刚才他画的时候你注意到了吗?应该特别注意什么?那位戴眼镜的小伙子。

  生:一定得通过圆心。

  师:直径用字母d表示,数学上就是这么规定的。d和r是什么关系?

  生:2倍,d=2r。

  师:画圆是怎样画的?

  师:先确定一条半径,也就是两脚之间的距离,然后确定一个圆心,再旋转一圈。为什么随手就能画出一个圆呢?

  生:圆规画长是半径

  师:为什么这么做呢?先确定圆心,半径长度。

  生:圆心到圆上的距离就不相等了

  师:圆的特点:圆一中同长。知道圆的特点太重要了。

  四、球场上解释“圆”

  1.出示篮球场。

  师:是什么?中间是什么?中间为什么是个圆?不知道篮球比赛是怎么开始的,不能回答这个问题,我们一起来看。

  2.播放篮球开赛录像。

  师:为什么中间要是个圆呢?

  生:刚开始比赛要往对方场地传球,这样中间画圆比较公平。

  师:队员在圆上,球在中心。圆一周同长,比较公平。

  3.探讨大圆的画法。

  师:这个圆怎么画?

  生:先找到圆心,两点间距离固定好,再画

  师:大圆,再大,超大呢?没有圆规可以画?

  生:用大拇指当圆心,用食指画

  师:画大圆?

  生:确定圆心半径再画。

  师:这个大圆,没有圆规怎么画?

  生自由交流

  4.追问大圆的画法。

  师:不是没有规矩不成方圆吗?怎么没有圆规也能画圆?

  生:规矩不一定单独指圆规,指的应该是画图的工具。我们可以用不同的工具来画。

  师:我们这句话还是对的。

  五、回归情景突破“圆”

  1.出示爱因斯坦的名言:“我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。”

  2.追问中提升认识。

  师:一定这样吗?宝物一定是在以左脚为圆心,半径是3米的圆上吗?[课件:西瓜]宝物可能在哪里?

  生:地下。

  师:拿西瓜说事。我们就想到球了,球也是一中同长。圆和球有什么不同?

  生:圆是平面图形,球是立体图形。

  六、 课后延伸研究“圆”

  依一天时间顺序,配乐出示各种各样的圆。

北师大版小学数学六年级上册《圆的认识》教案 篇6

  教学内容:

  教科书第12页,圆的认识及圆各部分的名称。

  教学提示:

  本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。

  单元主题图呈现的学生所熟悉的校园及周边环境的情景图,目的是为了让学生从熟悉的生活环境中感受到圆、圆的周长、圆的面积在实际生活中的应用。

  一方面要激发学生学习圆的有关知识的*,另一方面要让学生体会到本单元知识与现实生活的密切联系。

  例1呈现有圆的物体,根据它们的共同特征抽象出圆的平面图形。通过圆规的自我介绍,让学生掌握画圆的方法,并归纳出“圆是由曲线围成的一种平面图形”。

  例2通过操作活动让学生认识圆各部分的名称和特征。

  发现圆的直径和半径都有无数条,在同一圆里,所有的半径和直径的长度都相等,直径的长度是半径的2倍,圆是轴对称图形等特征。

  在低年级的学习中,学生已经对圆有了初步的认识。可以在众多所画图形中较为准确地辨认出圆。有一定的研究图形特点的方法积累(如:对长方形和正方形的研究)。这些方法可以为课堂中学生研究圆的特点有一定启发。同时,学生能够体会到圆广泛的存在于我们的生活之中,并能举出生活中圆的例子。但不能很准确地对于生活中圆的例子进行准确性描述。举例说出生活中见到过的圆,学生回答:笔筒、胶条……不能正确认识到这个物体上的某个面是圆形的。但对于让学生做到真正深入认识圆是由之上的若干个点连接而成,以及在学生头脑中充分体会到圆的各点分布均匀性和广泛的对称性还是比较困难的。

  同时,六年级的学生对圆规都有一定的了解(平时买作图工具时都是成套的,包含圆规),一般都有画圆的经验。

  教学目标:

  1.知识与技能:使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径,能借助物品或圆规画圆,会应用圆的知识解释一些日常生活现象。

  2.过程能力与方法:使学生经历从猜想到验证的过程,在活动中进一步积累认识图形的学习经验,增强空间观念、合作意识,培养学生观察、动手操作、抽象概括、与他人合作交流等各方面的能力,进一步发展数学思考。

  3.情感态度与价值观:使学生进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。

  教学重点:

  感知并了解圆的基本特征,认识圆的各部分名称。

  教学难点:

  理解直径与半径的关系,熟练掌握画圆的方法。

  教具准备:

  多媒体课件,为学生准备两张白纸、一个圆片。

  学具准备:

  圆规、圆形物体、直尺。

  教学过程:

  一、新课导入

  (欣赏单元主题图,激趣引入。)

  1.观察主题图。

  提问:同学们,在我们美丽的学校内有一个水池,你们观察过吗?池内的鱼儿美丽,水面平静。请同学们想象一下:如果我们在平静的水面上投进一块石子后,水面荡开的波纹,应该是一个近似的什么形状?请用动作说明。

  圆在生活中太常见了!许多物体表面的形状与圆有关。根据你们的经验,能举个例子吗?

  2.揭题:看来同学们对圆已经有了一些认识,今天这节课就学习“圆”。

  3.在以前的学习中,已经认识了哪些平面图形?其实圆也和学过的这些图形一样也是一个平面图形,但是和这些图形又有不同之处,你发现了吗?(圆是由曲线围成的一种平面图形) (注意:①学生自带的圆形物体可以让学生用手指一指;②在指物体时,要明确指的是哪一个面;③不能把球误认为圆。)

  【设计意图:一方面让学生感知圆来源于生活,与生活实际紧密相连,体验数学与生活的联系;另一方面通过观察、比较,让学生感受圆和以前学过的平面图形的不同。】

  二、探究新知

  1.圆规画圆。

  (投影展示例1图中圆形物品)

  教师:同学们观察图中的物品,它们是什么形状?

  预设:(生:圆形。)

  教师:古希腊哲学家、数学家毕达哥拉斯认为“一切平面图形中最完美的是圆!”。你能用手中的工具画一个标准的圆吗?(指向明确用工具画圆,并请学生尝试画圆)

  学生独立用画圆,教师巡视指导。

  投影展示学生画的圆。(由于是第一次画圆,学生画的可能不规范)

  教师可以提问,请你介绍一下你用的是什么工具,是怎么画圆的?

  学生回答用圆规画圆。

  此时教师可演示怎样使用圆规正确的画圆。(强调不能用手握住圆规的两脚来画圆)

  然后跟着要求同学们用圆规再画一个标准的圆。

  学生独立画完之后,投影展示学生画的圆,指明学生说画法。

  预设:我用圆规画圆,我把圆规的一个脚固定在一个点上,另一个脚绕这个点旋转1圈,就画出了一个圆。

  【设计意图:让学生尝试用圆规画圆,体会用圆规画圆的步骤,明白到圆的大小与圆规两脚间的距离有关,用圆规画圆很方便。】

  2.认识圆。

  (1)提问:观察对比上面所画的两个圆,是不是一样的?(预设:不一样)

  哪些地方不一样?(预设:大小、位置)

  请同学们思考为什么不一样呢?

  圆的位置不一样,是因为固定点的位置不同,其实,我们把在圆中心的这一固定点叫做圆心。画圆时,固定的点叫做圆心,圆心一般用字母O表示。

  圆心到圆上任一点的线段是半径,一般用字母r表示。

  通过圆心并且两端都在与圆上的线段是直径,一般用字母d表示。

  【设计意图:结合学生圆规画圆的体会,介绍圆心、半径,明确画圆时圆规两脚间的距离就是圆的半径。这样学生初步感知圆心、半径和直径的含义。】

  (2)强化认识半径。

  教师:刚才同学们画的圆都比较好,我们还认识了半径?那现在大家就在你刚才画的圆中画出这个圆的半径来,画得越多越好。

  教师可以提问:想一想,圆有多少条半径? 能画完吗?

  预设:在圆内有无数条半径,画不完。

  提问:你是怎样观察得出在一个圆内有无数条半径的?

  预设:因为半径是连接圆心到圆上任意一点的线段,这样的线段有无数条。

  教师:那么半径是一条怎样的线段呀?是连接圆心到圆上任意一点的线段。(展示动画从圆心到圆上的一条线段,齐读)   由于圆周上有无数个点,所以半径就有无数条。

  教师:现在就请同学们画出这无数条半径的代表,你认为画几条合适。(预设:1条,因为所有半径都相等。)

  质疑,请学生说理由:直尺量;或用圆纸对折。

  说明半径的特征并板书:在同一圆内,半径有无数条,并且长度都相等。

  【设计意图:让学生掌握通过动手折一折、量一量、比一比、画一画,及在小组里相互交流、讨论,获得圆的特征之一。不仅使学生的认识由感性上升到理性,而且使学生学到了解决数学问题的一些基本方法。】

  (3)强化认识圆的直径。

  ①除了半径以外,在圆中还有没有像这样比较特殊的线段能决定圆的大小。(预设:直径)

  教师:指明学生到黑板上画出来,并提问画时要注意什么?(预设:过圆心,两端在圆上)其实直径就是通过圆心并且两端都在圆上的线段。

  ②请学生在自己画的圆内画出直径的代表。画得越多越好。

  ③揭示直径的特征:在同一圆内,直径有无数条,并且长度都相等。

  ④引出半径和直径的关系,或动手验证;直尺量;或用圆纸对折。

  通过对折等活动,得出:圆是轴对称图形,每条直径所在的直线都是圆的对称轴。

  【设计意图:让学生掌握通过动手折一折、量一量、比一比、画一画,及在小组里相互交流、讨论,获得圆的特征之一。不仅使学生的认识由感性上升到理性,而且使学生学到了解决数学问题的一些基本方法。】

  (4)揭示半径和直径的关系。

  d=2r, r=1

  /

  2d。这个关系的前提是什么?(预设:同一圆内)

  为什么要加这个前提,不要行吗?

  学生讨论后汇报。

  师生共同小结:在同圆或等圆里,所有的半径都相等,所有的直径也都相等;直径等于半径的2倍。

  三、巩固新知

  1.练习三第1题:用彩色笔标出下面各圆的半径和直径,并量出长度。

  2.完成第13页课堂活动第1题。

  第1题(1):画几个圆心在同一点而半径不相等的圆;画几个圆心不在同一点而半径相等的圆。

  画完第一问之后,教师可提问:圆心在同一点上,为什么有的圆大,有的圆小?

  (预设:因为半径不一样,半径越大,圆就越大)由此得出:圆的大小是由半径决定的。

  第2问画完后,教师可以提问:这几个圆的大小是一样的,为什么有的圆在这里,有的圆在那里呢?(预设:因为圆心的位置不一样)由此得出:圆的位置是由圆心决定的。

  第1题(2):学生独立画半径为2.5厘米的圆,用字母标出圆心、半径和直径,小组内交流。

  3.独立完成教材13页课堂活动第2题,小组内交流。

  【设计意图:通过本环节,让学生对圆的特征进一步理解,对于圆的特征更加熟悉,对所学知识掌握地更加牢固。】

  四、达标反馈

  1.说一说圆中什么样的线段是半径、什么样的线段是直径?

  2.判断题。

  (1)所有的半径都相等,所有的直径也都相等。 ( )

  (2)从圆心到圆上的任意一点的距离都相等。 ( )

  (3)画一个直径为4厘米的圆,圆规两脚间的距离应是4厘米。 ( )

  (4)直径是3厘米的圆比半径是2厘米的圆大。 ( )

  3.填一填。

  (1)一个边长8厘米的正方形里,画一个的圆,这个圆的直径是( )厘米,半径是( )厘米。

  (2)在一个长6分米、宽4分米的长方形里,画一个的圆,这个圆的半径是( )分米。

  4.盒子里刚好放下三个罐头,每个罐头的半径为3厘米,盒子的长和宽各是多少?

  五、课堂小结

  教师:通过这节课的学习,你对圆有哪些认识?你有什么收获?

  学生谈自己的收获,畅所欲言。

  教师:想一想生活中的一些物品为什么要设计成圆形?车轮为什么要设计成圆形?下节课我们一起来交流。

  【设计意图:通过回顾总结,对知识进行梳理,有助于学生逐步形成数学学习方法和经验;同时把“圆”再次回归生活,将数学与生活紧密结合,让学生体会到数学学习的价值,深化学生对圆的特征的认识,增强数学学习的兴趣。不仅拓宽了学生的知识面,强调数学与生活有密不可分的联系。更是把学生的数学思维引向生活。】

北师大版小学数学六年级上册《圆的认识》教案 篇7

  教学目标:

  1、认识圆,知道圆的各部分名称;

  2、掌握圆的特征,理解和掌握在同一个圆里半径与直径的关系

  3、学会用工具画圆;

  4、培养学生的观察能力,动手能力以及抽象概括能力。使学生初步学会应用所学知识解决简单的实际问题;

  5、让学生喜欢上美丽的圆,激发探索圆的特征的兴趣。

  重点难点:

  理解和掌握圆的特征。

  教学准备:

  课件

  教学过程:

  一、课前活动

  同学们,上课之前我们先轻松一下做一做课间操怎样?起立

  第一节:甩甩你的手臂(从前往后再换个方向)

  第二节:转转你的脑袋

  第三节:原地转身

  二、导入新课

  1、师:上课前的运动操你们发现了什么?(在做圆周运动)

  2、师:刚才发现有的同学手臂转得不太像圆,什么办法转得更像圆呢?(手直、肩不动)

  3、师:我们在运动中可以产生圆,在生活中也有许多的圆,大家看:欣赏圆的图片。

  4、揭题:圆的认识

  5、师:我们看在这餐桌中看到了有几个圆?

  这中间有着许多的数学知识,相信吗?

  三、动手操作

  (一)师:下面我们就做一做这个餐桌

  [媒体]做一做:同桌合作,每人在白纸上画一个圆,然后剪下组合成一张圆桌模型。

  (二)师:下面我们交流一下是怎么做的?

  [第一步]我们第一步是画圆,你是怎么画的?

  1、说说你是怎么用圆规画圆?

  2、师:老师也在黑板画一个圆(边画边说)

  把圆规的两脚分开,定好两脚间距离(半径)

  把有针尖的一只脚固定在一点(圆心)上

  把装有铅笔的一只脚旋转一周,就画出一个圆

  3、老师的圆画得怎样?画圆的时候要注意什么?(针尖不动、两脚距离固定)

  4、你们画的两个圆的大小为什么不一样?(两脚的距离不同)

  [第二步]我们是把画好的圆剪下来,问:剪时与我们以前的剪正方形、三角形的时候有什么不同?

  师:圆呢?(弯的)弯的在数学上我们叫做曲线,所以圆是由曲线围成的与以前所学习的由线段围成的平面图形有很大的区别。

  [第三步]

  剪下的圆怎么组合起来呢?这2个针孔从哪里来?

  师:针孔的这一点,我们叫做这个圆的圆心也可以用字母“o”表示。

  师:还有什么办法找到圆心呢?(折)你们先拆下来试一试。(生动手操作)

  师:说说你是怎么折的?

  可能: ①生:对折再对折,交点就是圆心师:还可以怎么折

  ②对折、展开、再对折、再展开

  师:我们再看这里有几条折痕?而且它们都经过(圆心)像这样的折痕叫这个圆的直径字母d表示(画在黑板上)。

  师:圆里还有什么?(半径)你折的圆里有吗?指一指(画在黑板上)这就是半径。

  师:什么是直径、半径,自学课本p80 读一读

  师:说一说什么是直径?解释圆上、圆外、圆内。

  我们一起指指,说说什么是半径?

  [媒体]连结圆心和圆上一点,是半径吗?半径也有几条?为什么?[板书]

  你们也画一条直径和半径。

  仔细观察,你还发现了什么?

  ①一条直径=两条直径。

  师:还可以怎么说?你是怎么知道?用字母可以怎么表示呢?

  ②所有的直径、半径都相等。

  师:你们认为呢?可以用什么方法证明?(量一量)你量一量。

  你量的是什么?量的结果呢?你的结论呢?

  师:大家观察得很仔细也很会动脑筋,现在老师有个问题不知可以?所有的直径长度都相等?(在同一个圆里)还可以呢?(相等的圆)你认为还有哪些结论也需要这个前提?

  [板书]:在同圆或等圆中

  三、应用

  师:所以我们今后在考虑问题的时候还得想得仔细、周详,对吗?下面我们来看一组填空

  1、[媒体]填一填

  2、[媒体]再请你辩一辩:下面各句话对吗?

  (1)两端都在圆上的线段叫直径

  (2)所有的半径都相等

  (3)圆是由曲线围成的封闭图形

  四、画圆

  师:回答得不错,现在老师要提一个新的要求,能接受吗?

  请你画一个半径为2厘米的圆

  师:想想半径为2厘米该怎么画呢?可以商量一下再画。(生画)

  师:说说你是怎么画的?(两脚间的距离为2厘米,再定住,再画)

  简单地说你是怎么确定半径为2厘米的?

  如果画半径为3厘米的圆呢?

  画一个直径为8厘米的圆呢?

  你发现了什么联系?(半径=圆规两脚之间的距离)

  圆的大小是由什么决定的?位置呢?

  画一个直径为1米的圆

  (等一会儿)

  师:为什么不画?(圆规太小)想有什么办法呢?(钉子、绳子)绳子多长?(50厘米)为什么?我们下课试一试好吗?

  五、总结

  师:今天我们学习了圆的认识,从圆桌到圆的各种知识还有什么知识值得我们问一问有吗?

  师:这些都是我们以后要学习的,老师还有一个问题:谁的家里用的是西餐桌?有什么感觉?相对来说,圆桌呢?

北师大版小学数学六年级上册《圆的认识》教案 篇8

  一、说教材

  圆的认识是小学数学第 11 册第四单元圆中较为重要的教学内容。它是在学生学过了平面直线图形的认识和圆的初步认识的基础上进行教学的,是研究曲线图形的开始,是学生认识发展的又一次飞跃。本课时的教学是进一步学习圆的周长和面积的重要基础,同时对发展学生的空间观念也很重要。教学目的: 1 、使学生认识圆; 2 、掌握圆的特征,理解在同一圆内直径和半径的关系; 3 、掌握用圆规画圆的方法:学生通过观察和动手操作参与知识形成的过程,培养它们认识周围事物的形体特征的兴趣和意识,能运用所学的数学知识解决简单的问题。教学重点;学生掌握圆的各部分名称及同一圆内半径与直径的关系。教学难点 :半径、直径、及其关系,圆的正确画法。

  二、说教学方法

  遵循“教师为主导,学生为主体,训练为主线,思维为核心”的原则,学生主动参与教学的全过程,真正成为学习的主人,教学关键处体现教师的主导作用。如:电脑的演示、练习的设计、学法的指导、讨论的组织,没有教师精心的安排是不行的。

  1、教法:以演示法、尝试法为主。

  采用教师引导下,课堂教学与小组合作学习相结合、教师演示与学生尝试相结合、充分发挥计算机辅助教学的功能,以多媒体图象、文字、声音,动画的综合运用来吸引学生,刺激学生的感官,启迪思维,从而深刻的理解新知。

  2 、学法。教师不单要把知识传授给学生,更重要的是教给学生获取知识的方法,所以我很注重学法的指导。

  以实践→认识→再实践→再认识为主线,采用多种方法相结合。教学圆的特征时,主要采用了操作法,学生借助圆形纸片,通过折一折、画一画、量一量,使多种感官参与活动,发现特征后,能用语言表达出来,培养学生动口、动手、动脑的能力:能自学的尽量让学生自学,教学圆的画法时,采用了尝试法与操作法相结合,以培养学生的自学能力、概括能力、探索精神和尝试精神;教学半径与直径的关系时,主要采用了讨论法,使个人实践与小组合作学习,互相讨论相结合,学生取长补短,团结协作,有利于发展他们的创造性思维和数学语言的表达能力。

  三、说过程和意图

  (一)复习铺垫 导入  新课

  我们已经认识过哪些平面几何图形?旧知识的复习,为新知识学习做好铺垫。教师有意分类,导出圆是平面上的曲线图形。从而导入  新课。

  (二)动手操作 探索新知

  1 、感知圆,使学生对圆有足够的感性认识。

  ①举实例 ②借助实物比照画圆 ③剪出圆形纸片

  小学生的思维以具体形象为主,由学生熟悉的圆形物体引入。再借助实物比照画圆。由实物→图形→特征,符合几何知识教学的结构。

  2 、实验操作,抽象概念。

  思维与动手密不可分、教师引导学生借助圆形纸片,通过折一折,画一画,量一量等活动,有意识地对折痕进行观察,让他们探索、发现圆的特征。

  ①认识圆心、半径。懂得:圆中心的一点,叫做圆心;连接圆心和圆上任意一点的线段叫半径。学生悟出圆的特征,在感性认以的基础上,形成理性认识,符合认知规律。

  A:画半径比赛:谁画的半径最多。(谁画完了吗?)

  B:它们的长度都相等吗?为什么?

  当学生通过比赛、测量得出在同一个圆里,半径有无数条,长度都相等。

  ②认识直径

  A:观察折痕有什么特点?让学生懂得:通过圆心并且两端都在圆上的线段叫直径。B:组织学生分小组讨论,你能否发现直径有什么特征?为什么?留给学生思维的空间和机会,启迪学生的思维。C:汇报得出:同一个圆里,直径有无数条,长度都相等。

  ③认识直径与半径的关系

  直径和半径的关系,是本课时的教学重点,又是继续学习圆的有关知识的基础。为了突出重点,突破难点,我适时地组织学生进行讨论:在同一个圆里,直径的长度与半径又有什么关系?学生通过动手、测量、观察、比较等活动后,各抒己见、集思广益、取长补短。我力争为学生创造一个平等和谐、活跃的课堂学习的气氛,调动学生的积极性,使他们获得在群体中充分展示自己才华的机会,有利于在实践中获得感性认识内化为表象,形成思维;同时培养学生团结协作的互助精神。更重要的是让学生讲清用什么办法得出“在同圆或等圆中,直径的长度等于半径的 2 倍”这一结果的。

  3 、师生小结圆的特征。

  (三)感知形成 操作画圆

  1 、观察电脑投影,演示圆的形成,向学生渗透圆是与定点的距离等于定长的点的轨迹。

  2 、让学生自学课本,尝试画圆的步骤及应注意的问题。

  ①介绍圆规 ②自学画圆步骤,尝试画圆 ③讨论:怎样用圆规画圆? ④汇报、教师示范画圆。

  让学生尝试画圆,碰到困难时,教师才给予适度指导。如:圆规的正确握法等。画任意圆是不难的,较难的是给定直径长度画圆。为了突破这一难点,学生画圆时,由不熟练到熟练,由画任意圆到按给定半径长度画圆,再到给定直径长度画圆,循序而渐进。再次借助多媒体演示,感知圆的形成,结合实际操作,关键让学生体会圆规两脚的距离即半径,体会圆心决定圆的位置,半径决定圆的大小,有利于加深对圆的特征的认识。圆的画法是本课时又一个教学难点 ,我采用操作法与尝试法相结合,力求花最少的时间获得最佳效果,充分发挥学生的主体作用,培养他们的探索精神和尝试精神。

  (四)综合练习 启智培能

  精心安排课堂练习,以教材为主,在不脱离教材的同时,突出思维训练,形式多样,学生乐于参与,课堂气氛和谐、有利巩固所学知识,开拓学生思维。

  1 、基础训练:判断题和练习二十五第五题。

  使学生加深对概念的认识,巩固圆的特征。

  2 、发散练习:下面图形你看到了什么条件?联想到了什么条件?

  培养学生的发散思维。

  3 、实际应用:车轮为什么要做成圆的?车轴应装在哪里?

  经学生讨论自己得出结论,再用多媒体演示。趣味性展示了用圆形、方形、椭圆形做成的三种车轮在行进中的优劣,进一步感受到车轮要做成圆的道理。努力把所学知识与生活实际紧密结合起来,真正做到学以致用。让学生体验成功的喜悦,又使课之将终,而趣犹在。

  (五)总结

  简要总结,使学生明确学习目的,利于系统的掌握知识。

  (六)作业 

  1 、练习二十五第4题

  2 、思考:你能想办法在操场上画一个很大的圆吗?作业 布置适度、适量力争减轻学生的课业负担,又把培养学生的动手操作能力延续到课外。

  (七)板书设计 

  力求简明扼要、条理分明、布局合理,体现形式美和简洁美。把知识的重点鲜明地在学生眼前。起画龙点睛的作用,加深学生的印象。

北师大版小学数学六年级上册《圆的认识》教案 篇9

  昨天在城一小执教了公开课《圆的认识》,这次公开课的主题是“学会学习”。说实话,对于学会学习,我不是很清楚具体的要求,所以在设计的时候我还是沿用了我一贯的设计分格。由于是借班上课,不熟悉孩子的上课习惯,所以课后的感觉只能算是基本实现了我最初的设想。

  在这节课中,我主要表达以下一些想法:

  1.开放。可能是在实验小学近20年的教学经历,遇到的孩子整体水平较高,所以我的设计比较开放,不拘泥于教材的条条框框以及对应的练习,而是把相关的东西都糅合、重组,再以我熟悉的表达方式加以呈现。学生的前置作业,没有标准答案;各素材的学习,不同的人可以达到不同的学习目标。特别是在不同的画圆方法中,各有侧重地介绍了圆的特征,加强了数学表象与本质的联系,在开放中走向深刻。

  2.联系。我习惯把一个具体的教学目标放到整个大的知识框架中,用联系的方法去认识,在比较中既准确把握本课的教学内容,又巧妙地巩固了旧知,这样的学习效果比较科学,有利于学生真正的掌握。

  3.严谨。数学是一门严谨的学科,特别是在一些术语的描述方面。尽管学生对于“圆”不陌生,但用数学化的词语来描述时,往往会词不达意的,对此,我是很重视的,所以利用时机有意识地引导学生准确表达。另一方面,我注重透过现象研究本质,追求思维的深刻性。比如用圆规画圆有什么困难?要注意什么?然后再层层剖析。这样的例子还有几处。努力实现数学的严谨性。

  4.美观。自认为我的课件很美。在教学过程中,我力求使素材的原型贴近学生熟悉的事物,这样可以使学生更轻松地明白其所以然;力求使素材的形象美观,这样对学生的视觉有一定的冲击力,有利于他的记忆与保持。同时,可以使课堂呈现一种和谐、愉悦的效果。

  5.化的利用素材。一般老师都会在黑板上示范画圆,而我这节课用的是一个剪下来的圆。这样做的好处是既可以清楚地在圆上找到半径、直径、圆心以及特征;又可以反过来后继续学习折的方法;甚至在后面讲到车轮的时候,又起到了一个实物演示的作用。可谓是用心良苦。还有用电脑画圆,里面也涉及到了多个知识点,得到了充分的利用,节约了时间,在有效的前提下争取高效。

  王婆卖瓜,汗颜!突然又想到了“别针现象”,哈哈,不舍得舍就不舍了。

  课后,再结合“学会学习”看这节课,个人感觉还是较好地实现了其初衷的。

  “学会学习”的前提应该是让学生学会知识。如果说,形式很花哨了,但学生什么都没学到,或是没有完全完成学习的任务时,“学会学习”就成为了一句空话。我想,至少这节课在教学目标的达成度上做得还是可以的。

  学会学习应关注的非智力心理因素,虽然由于借班上课,缺少默契,但从学生的表现来看,他们还是蛮舒服地上完了这节课。教学的事不能立竿见影,但至少这节课应该能给他们留下比平常课更多的影响。

  至于有老师提出“盖子不一定要圆”一说,我当时没有说明,其实这曾经是微软公司一道很的面试题。我们数学教师应该教的更多是数学的普遍现象,而不应钻进死角。

  至于有老师提出的“下要保底”一说,我更是放心,至少我教的班级差生不会比别人多吧。

  当然,这节课确实是有缺憾的地方。用上课时感受来讲,我还是缺少让课堂“飞扬”的魅力。可能投入得还不够多,在学生面前应更自信甚至是张扬些,学生才能更放得开些。我设想如果是我以前的学生,这样的一节课应该是更有童趣,更活泼,更富有想象力与思维深度。所以,在今后的日子里,我一方面要继续认真钻研教学设计,另一方面要提高煽动课堂气氛的能力,让自己的课堂日益成熟。

北师大版小学数学六年级上册《圆的认识》教案 篇10

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第2,3页"圆的认识一".

  【教学目标】

  1,结合生活实际,通过观察,操作等活动认识圆,认识到"同一个圆中半径都相等,直径都相等",体会圆的特征及圆心和半径的作用,会用圆规画圆.

  2,结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象.

  3,通过观察,操作,想象等活动,发展空间观念.

  【教学重,难点】

  1,圆的特征.2,画圆的方法.

  【教具,学具准备】

  1,三角尺,直尺,圆规.

  2,教学课件.

  【教学设计】

  教 学 过 程

  教 学 过 程 说 明

  一,观察思考.

  1,欣赏生活中的圆:棋子,桌面,钟面,车轮,中国结.

  2,观察这些图形与我们以前学过的图形有什么不同

  生活中还有哪些物体的面是圆形

  做套圈游戏,哪种方式更公平

  二,画一画.

  你能想办法画一个圆吗

  用手比划着画圆.

  用一根线和一支笔画圆.

  用圆规画圆.

  2,教学用圆规画圆的方法.

  三,认一认.

  学生用圆规画一个圆.

  讨论:圆规的"尖",圆规张开的两脚之间的长度所起的作用.

  告诉学生半径和圆心.

  四,画一画,想一想.

  要求学生画一个任意大小的圆,并画出它的半径和直径.

  观察比较得知:圆有无数条直径,无数条半径.

  在同一个圆内直径都相等,半径都相等.

  以点a为圆心,要求学生以a为圆心画两个大小不同的圆.

  画两个半径都是2厘米的圆.

  五,讨论.

  圆的位置与什么有关系

  圆的大小与什么有关

  使学生通过观察日常生活中的圆形物体,建立正确的圆的表象.

  使学生在动手操作中体会圆的本质特征.

  让学生进一步体会圆的本质特征.

  让学生认识到圆心决定圆的位置,圆的半径决定圆的大小.

  六,观察与思考.

  1,播放课件.

  动物王国自行车比赛.分别有圆形,椭圆形,正方形的车轮.

  思考:车轮为什么是圆形

  操作:

  用硬纸板分别剪一个圆形,正方形,椭圆形.

  小组合作描出运动轨迹.

  七,练一练.

  课本练一练题目.

  八,全课小结.

  【教学反思】

  圆的认识是在学生已有知识的情况下进行的,所以学生很快能找到圆的主要特征,而且能从本节课里掌握圆的特征,掌握圆各部分的名称,以及直径半径等之间的关系.

北师大版小学数学六年级上册《圆的认识》教案 篇11

   单元 1课时

  课 题

  圆的认识(一)

  

  

  

  

  1、给合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。

  2、通过观察、操作、想象等活动,发展空间观念。

  

  

  

  

  重点

  在观察、操作中体会圆的特征。知道半径和直径的概念。

  难点

  圆的特征的认识及空间观念的发展。

  教具

  教学圆规

  电化教具

  课件

  教学过程:

  一、观察思考

  1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。

  2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。

  3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)

  4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。

  二、画圆

  1、你们谁能画出圆来吗?动手试一试。

  2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。

  3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)

  三、认一认

  1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。

  2、半径和直径的辨认教案 height=283 alt=北师大版6年级数学第11册第1单元《圆的认识》教案 。

  3、

  教案 height=198 alt=北师大版6年级数学第11册第1单元《圆的认识》教案

  四、画一画,想一想

  1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直

  径呢?(放动画)

  2、以点a为圆心画两个大小不同的圆。

  3、画两个半径都是2厘米的圆。

  4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗?

  五、应用提高

  讨论:圆的位置和什么有关系?圆的大小和什么有关系?

  六、作业

  1、教材第5页练一练

  2、在平面上先确定两个不同的点a和b,再画一个圆,使这个圆同时经过点a和点b(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)

  训练学生的观察能力,发现问题的能力

  不直接说出圆,把思考的空间留给学生

  在画图中体会圆的特征

  思考共同之处时再一次体会圆的特征

  通过正反例的练习,加深对半径和直径的理解

  动手操作,理解画圆的关键是定圆心(位置)和半径(大小)

  巩固提高,满足不同学生要求

  

  

  

  

  圆的认识(一)

  圆(本质特征):圆上各点到定点(半径)的距离都相等。

  圆的画法:

  圆的相关概念:圆心,半径,直径

  同一个圆中,有无数条半径,它们都相等;同一个圆中有无数条直径,它们也都相等。

  

  

  

  

  在学生已认识圆的基础上,深入的了解圆的各部份名称。学生对圆心与圆

  的半径的作用能理解,掌握了本课的重点内容。

北师大版小学数学六年级上册《圆的认识》教案 篇12

  教学内容:

  人教版六年级上册第四单元第一课时。

  教学目标:

  1、知识目标:使学生认识圆,知道圆的各部分名称。掌握圆的特征,理解直径与半径的关系。初步学会用圆规画圆。

  2、技能目标:让学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。

  3、情感目标:通过操作、研讨,培养学生独立探索能力和创新、合作的意识。

  教学重点:

  掌握圆的基本特征,理解直径与半径的关系。

  学具准备:

  圆的实物、剪好的圆片、圆规、直尺

  教具准备:

  细线、图钉、剪好的圆片、三角板

  教学过程:

  一、悬念产生好奇,好奇带入新课

  (一)设置悬念

  师:同学们,你们知道吗?(课件展示、图文并茂)

  1、车轮为什么都是圆形的?

  2、篮球场的中间为什么要设计成圆形呢?

  3、枪口、炮口为什么都是圆形的?

  师:同学们,这些问题你们暂时还不必回答,但老师还有一个问题需要马上回答,这三个问题都与什么有关?

  (当学生回答是“圆”时,教师板书课题)

  师:当同学们通过这堂课的学习,对圆有一定认识后,你们再回答这三个问题,相信你们的答案会更完整、更圆满。(在黑板的一侧板书:圆满)

  [设计意图]不拘泥于教材内容,从学生年龄和心理特征出发,用心扑捉圆在生活中、自然中的原型,巧妙地创设了“三个问题”情境,引发学生的好奇心,从而使他们带着一种“打破沙锅问到底”的向往与追求的意向,以的状态进入学习角色。同时,在“暂时还不回答”的关子下,把“三个问题”集中在“圆”上,旗帜鲜明地拉开了这节课的序幕,这一导课不仅意味深长,激发了学生的学习兴趣,并开始不知不觉地渗透了“圆的文化特征”意识,可谓是一举两得。

  二、在猜想中探究,在探究中感悟

  (一)生活中的圆

  师:生活中你们见到哪些物体是圆形的?

  (学生回答时,教师可要求学生将已准备的实物举起展示)

  (二)运动中的圆

  师:你们都是生活中的有心人。那么下面的情况可能会出现怎样的现象呢? (课件展示)

  1、一粒石子抛入平静的水面时

  2、电风扇的扇叶转动时

  (三)探究圆的形成

  一根细线,用图钉固定一端,另一端绑着一支粉笔旋转一周。

  1、师:接下来做个小实验,老师用图钉固定线的一端,将细线拉直,绑有粉笔的一端旋转一周,会出现什么现象?

  师:松开细线的这头,粉笔还能转圈吗?(孕伏“定点”意识),图钉按住起什么作用?

  2、师:刚才老师是怎样操作画出一个圆的?

  学生交流

  师:图钉按住的一端(不动),带粉笔的一端我们把它看作一个点,这个点是(运动的),怎么运动的?

  师:(把线拉直)这样运动时动点就与固定的这点距离(保持不变)。粉笔在这个运动轨道上旋转一周就得到了一个(圆)。

  3、师:如果把细线放长,粉笔继续旋转一圈,发生了什么变化?看来这细线的长短可以确定(所画圆的大小)

  (孕伏“定长”意识)

  [设计意图]以上三个教学环节,以“感知—想象—发现”为线索,逐步推进,串成学生探究“圆的形成”这一过程。感知是认识世界的开始,是思维、想象等一切心理活动的基础。通过“生活中的哪些物体是圆形的”举例,既激活了学生已有的经验,同时为过度到想象提供了丰富的表象,这样想象力也就引向了更成熟的高度。最后用他们的想象力猜测、感悟“圆的形成”两大核心要素圆心和半径,从而为后面的“圆”的本质认识打下了扎实的基础。

  (四)从画圆中认识圆

  1、通过回想前面的游戏,让学生在感悟“圆的形成”过程中思考:你会画圆吗?

  2、学生尝试画圆(教师巡视,收集学生不圆的和圆的作品。)

  3、投影展示学生作品、学生互相交流

  (投影展示“不圆”的作品)

  师:请你评价下这幅作品?

  你想提点什么建议?

  师顺着学生的阐述引出“定点”、“定长”。

  (让学生自己“由误到悟”,在交流、切磋中对“画圆时要注意什么”印象深刻)

  (投影展示“圆”的作品)

  师:请欣赏这幅作品是怎样被圆规创造出来的?

  两个学生介绍如何画圆,师追问“画的圆为什么有大有小?”

  随着学生反馈画圆的三个步骤,教师同时用课件演示圆规画圆。

  4、板书: 定点、定长、旋转一周。

  定点确定圆的位置,定长确定圆的大小

  5、如何在篮球场上画圆?

  师:我们会在纸上画圆了,其实生活中还有很多地方需要画圆。例如:要在篮球场上画一个很大很大的圆,你准备怎样做?与小组里的同学说一说你的想法。

  学生反馈、相互交流补充。

  [设计意图] “画圆”的环节,不仅仅只是学生掌握画圆的技巧、学会用圆规画圆的过程,更重要的是继前三个环节后,进一步提升学生对圆的初步认识,由表象逐步向抽象转化的过程。在这里教师还十分关注学生情绪,尊重学生意愿,在学生跃跃欲试时,采用先让学生尝试画圆,并利用可能“出现的问题”,揭示圆的画法、“圆的位置”和“圆的大小”等深层次问题,这是数学课堂教学的一种自然本色。数学来源于生活、用于生活,画圆后教师提出了一个开放性的问题:如何在篮球场上画圆?让学生从“纸上谈兵”,过渡到解决现实情境问题,与“探究圆的形成”有个呼应。

  (五)解读圆的概念

  师:刚才我们用圆规画圆、用绳子画圆,工具不一样,画出来的却都是圆,这是为什么?

  生1:原理都一样

  生2:都是按三步骤来画的

  师小结:画圆时都有两个点,一个点是固定的,一个点是运动的,两个点之间的距离保持不变,,动点在这个运动轨道上旋转一周,得到的图形就是(圆)。 所以,圆就是由无数个点连成的一条什么线?(曲线、封闭的曲线)

  (课件演示)

  (六)认识圆的各部分名称及其特征

  1、师:有关圆你还了解哪些知识?

  教师将“圆心o”“ 半径r”“直径d”写在3张卡片上,请学生一一贴在黑板上圆的有关之处。

  师:谁能在黑板上的圆中将它们画出来并贴好。(3个学生依次上台)

  2、直接揭示圆心的概念

  3、半径

  师:像这样的半径,你会画吗?

  学生动手画半径

  师:你是怎样画的?

  (注意引导学生阐述“从哪里出发画到哪里”)

  师:什么样的线段叫半径? 揭示半径的概念。

  (板:半径r)

  师:在同一个圆里,像这样的半径还能画吗?有多少条?为什么有无数条?

  生:圆上有无数个点。

  师:那它们的长度都有怎样的关系呢?谁来说说你的想法?

  4、直径

  师:直径你会画吗?在你的圆片上画出直径。

  师:你是怎样画的? 那什么样的线段叫直径呢?

  你们和数学家们总结差不多呢!翻到56页,全班齐读。

  (板:直径d)

  师:在同一个圆里,直径有多少条?

  师:那它们的长度都有怎样的关系呢?谁来说说你的想法?

  (板书:无数条 长度都相等)

  5、师:其实早在2500多年前,我国伟大的教育家、科学家就曾提出有关圆的概述 (课件出示)

  师:一中的“中”指的是?那“同长”的意思是?

  6、判断:以下圆内哪些线段是半径,哪些线段是直径?

  7、半径与直径的关系

  ①师:你会怎样去验证你的想法?

  在小组里商量一下,再派代表反馈。

  课件验证:在同一个圆里,直径长度是半径的2倍,半径是直径的1/2。 d=2r r=1/2d

  ②制造冲突(展示学生事先剪的一大一小的两个圆)

  疑问:在这两个圆中,半径、直径二者还存在以上的关系吗?

  (板书:在同一个圆里)

  [设计意图]探究圆的特征是本节课的重点,又是难点。怎么有个突破,使学生能轻松地接受,本环节是采用“画”、“量”、“折”,让学生动手操作、自主探究的方法。“画”是发现,是印证;“量”是验证、确认。这一为学生搭建的自主探究学习的平台,既能使学生学得生动活泼,积极参与,而且将对所学的知识理解得更深刻,记忆得更牢固,也正好印证了“儿童的智慧出在他们手尖上”这句话。

  三、运用知识,拓展思维

  (一)小裁判

  1、两端都在圆上的线段叫做直径。( )

  2、半径2厘米的圆比半径1厘米的圆大。( )

  3、圆的直径都相等。 ( )

  4、在同一个圆里,圆心到圆上任意一点的距离都相等。 ( )

  (二)你能帮忙找到这个圆的圆心吗?

  [设计意图]由于本节课是属概念教学课,作为反馈练习,仅设计了两大题。通过这两大题训练以检查学生对概念理解的情况,并解决学生容易混淆或出错的问题。

  四、解释自然中圆,欣赏人文中圆

  (一)解释自然中圆

  师:课的一开始,我们还留下三个问题(课件重返“三个问题”):由于时间关系,我们现在集中解决第一个问题好吗?

  1、分组讨论:车轮为什么都是圆形的?

  2、小组派代表汇报(教师根据学生的汇报,利用课件演示下面两个主要因素)

  ①平稳(因为车轴在车轮圆心上,同圆半径都相等,确定了车与地面距离不变,所以平稳)

  ②车速快(车轮接触地面只是一个点,摩擦力小,车速就快了。)

  [设计意图]这是一道引导学生用所学知识解决实际问题的训练题,以小组合作、同学互助,共同讨论为主要解题形式,以帮助学生综合运用知识、提高技能,培养学生不断探索、不断发现的精神,增强互助合作、敢于创新为目标。同时,本练习起到了“前后呼应”之教学艺术功能,成了学生善于动脑、勇于解题的动力,使学生在成功解答后有一种满足感,以进一步激发他们的求知欲。

  (二)欣赏人文中圆

  1、引言:同学们,世界是美妙的、神奇的,有了圆更增添了她的梦幻般的色彩。请欣赏

  2、课件演示:(配乐)

  摩天轮、花丛中肆意绽放的鲜花、中国传统的圆形剪纸、陶瓷艺术、圆形建筑、20xx年奥运奖牌、神秘*的阴阳太极图……

  还有古老的东方,中国人特别重视中秋、除夕、元宵等佳节,月下尝饼、桌上汤圆…这就意味着团圆、圆满;大陆同胞送给台湾同胞的团团、圆圆两只熊猫,不也就是盼望祖国早日统一,海峡两岸同胞早日团圆吗?

  圆,在我们身上遗留下的印痕是多么深刻而广远。圆,是和谐的象征,是幸福的感受!

  同学们,在这优美的旋律中,我们这堂课也接近尾声了。这节课愉快吗?你觉得这节课上得圆满吗?

  [设计意图]教学本质是一种文化。我们有理由向学生传递教学本身的内涵和鲜活的文化背景,引领他们通过学习感受数学文化的博大精深,努力使数学所具有的文化特征浸润于学生心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有习惯思维与阴影,真正美丽起来。为此,设计“欣赏人文中的圆”这一环节,就是引发学生领略“圆”的神奇魅力及其背后所蕴含的人文的、文化的特征,拓宽学生对“圆”的认识视域。同时,让学生真切地感受中国人对“圆”的特殊情感,激发他们爱祖国、爱学习的热情,为进一步学好“圆”打下坚实的基础。

北师大版小学数学六年级上册《圆的认识》教案 篇13

  一、教材说明;

  九年义务教育六年制小学数学[人教版]第十一册《圆的认识》

  二、教学目标;

  1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。

  2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。

  3、能正确熟练地掌握用圆规画圆的操作步骤。

  4、培养学生动手操作、主动探究、自主发现、交流合作的能力。

  三、教学流程;

  1、导入新课

  (1)学生活动(边玩边观察)。

  ①球、球相碰玩具表演。②线系小球旋转玩具表演。

  [教师要求学生将观察到的形状告诉大家,学生异口同声回答:圆形。这里,教师采用学生感兴趣的玩具表演活动,既直观形象,又易于发现,进而抽象出“圆”。学生从“玩”入手,不知不觉进入学习状态。学习兴趣浓厚,乐于参与,利于学习。]

  (2)师生对话(学生可相互讨论后回答)。

  教师:日常生活中或周围的物体上哪里有圆?

  学生:在钟面、圆桌、人民币硬币上……都有圆。

  教师:请同学们用手摸一摸,体会一下有什么感觉?

  学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。

  教师(多媒体演示:圆形物体→圆):这(指圆)和我们以前学过的平面图形,有什么不同呢?

  学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆)这种图形是由曲线围成的图形。

  教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗?

  学生讨论后回答:圆是平面上的一种曲线图形。(这时,教师请同学们把眼睛闭上,在脑子里想圆的形状,睁开眼睛再看一看,再闭上眼睛想一想,能否记住它。)

  教师在此基础上揭示课题,并请学生回答:你还想认识圆的什么?学生说:还想认识圆的圆心、直径、半径……

  [这里通过生生交流、师生互动,形象感知、抽象概括,帮助学生正确建立“圆”的概念。]

  2、探索新知。

  (1)探究——圆心

  ① 徒手画圆。

  教师请两个学生一同在黑板上徒手画圆,然后请同学们评一评(3个人)谁画的圆好呢?……师生认为用工具画圆才能画得好。[师生共同表演、平等相待、大家评说、其乐融融。]

  ②用工具画圆。

  教师请同学们用自己喜欢的工具画圆。学生画圆:a.用圆规画圆;b.用圆形物体画圆。[画圆方法任学生自选,既体现因人而宜、因材施教,又体现尊重学生(个性)、教学民主。]

  ③找圆心。

  学生动手剪一剪、折一折,再议一议、找一找……自我探索发现圆的“圆心”。[教师放手让学生在动手操作中探索,在探索中发现新知,培养探究能力。]

  教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“O”表示。(学生在圆形纸片上点出圆心,标出字母。)

  ④游戏趣味题。

  在操场上,体育老师在地上画了一个大圆,给同学们做游戏。老师说,不管你站在什么位置,都会派上用场。你喜欢站在什么位置呢?请你点出来。

  [教师请学生边点边说明这点与圆的位置关系,同时给予评说。如学生点到“圆心”,师评说:“你很有雄心,喜欢别人围着你转,将来必成大器。”如学生点到“圆内”,师评说:“你比较守规矩,喜欢在一定的范围内活动,将来不容易犯错误。”如学生点到“圆上”,师评说:“你做事很有规律,能够遵循原则,同时与‘上司’相处喜欢保持一定距离。”如学生点到“圆外”,师评说:“你很了不起,思维活跃,思路开阔,做事不愿受条条框框的束缚,喜欢创新,有开拓精神,将来定会大有作为。”……这样教学,生动有趣,其乐无穷,激励性强,学生乐学,学得轻松愉快、积极主动。学生对圆、圆心、圆内、圆上、圆外等基本概念能够有深刻的理解。]

  (2)探究——圆的直径、半径及其关系。

  教师:你还想知道什么?

  学生:还想知道圆的直径、半径,直径与半径之间有什么关系?……

  ①分组探究,合作学习。

  教师提出学习活动要求:先独立进行,再分组交流。通过动手“折、量、画、数、比(估)、看、议”等,总之随你用什么方法都可以,探索圆的直径、半径及其关系。(围绕“学习卡”上的有关内容进行。)

  分组汇报,全班交流。(填写学习卡)

  学习卡

  名称 意 义 用字母表示 在同圆( )里

  条数 长度 直径与半径的关系

  直径

  半径

  ②重点请学生说明你是怎样发现的,展示发现的过程,让同学们评价。

  ③操作检验,内化提升。

  a.考考你的判断力。

  用彩色笔标出下面各圆的半径和直径。[课本第87页“做一做”(略)]

  b.对答游戏(每两个学生一组):你说直径长度,我答半径长度;你说半径长度,我答直径长度。

  c.边体验,边说理:为什么车轮都要做成圆的,车轴应安装在哪里?(教师提供各种车轮形状和安装位置不一样的自行车玩具,让学生边操作边体验,进而明理。)

  d.合作操作探索。

  画一画、量一量、比一比、找一找:在同圆中所有的线段( )最长;你能用尺(直尺、三角板)测量没有标出圆心的圆的直径吗?

  [探索圆的直径、半径及其关系,主要是通过学生自我探索、合作探究、分组交流,以动手操作为主线,让学生自主参与,给予学生充分展示自我才智和展开探究活动的时空。让学生在自主探究中自我发现新知,学生的主体性作用得以充分发挥。学生学习的过程是感知的过程,是体验的过程,是感悟的过程,学生在感知、体验、感悟中发现知识、掌握知识,灵活运用知识解决有关实际问题。]

  (3)自我习作——用圆规画圆。

  ①学生自学:用圆规画圆的方法和步骤。(课本第87页)

  ②学生操作:用圆规画圆。(自我体会,怎样才能画对、画好。)

  ③汇报交流。教师根据学生的学习、操作情况指导学生汇报并总结。[适时板书:a.定长(即半径)b.定点(即圆心)]

  ④操作表演,全班共赏。

  A.按要求画圆。

  a.半径2厘米 b.半径2.5厘米 c.直径4厘米 (比较a、c,你发现了什么?)

  B.按要求画圆,并观察你发现了什么?(教师请学生画3个同心圆、3个大小不等的非同心圆。引导学生观察、讨论、比较并归纳:圆心决定圆的位置;半径决定圆的大小。)

  C.体育老师在操场上的圆怎样画?(学生讨论,全班交流。)

  [学习用圆规画圆,主要通过学生的学——培养学生的自学能力,学到画圆的方法;动手画圆——体验画法,掌握画法;操作练习——发现规律、内化新知,这样教学遵循了儿童的认知规律,具有良好的学习效果。]

  3、课堂小结。

  教师启发学生自我小结本节课的学习收获:知道了什么?怎么知道的?鼓励学生质疑:你还想知道什么?……

  4、创新思维训练游戏。

  教师:一个圆很美,大小不同的圆在一起组成美丽的图案更美。请大家设计由圆(或圆和其它平面图形)组成的图案,并写出创意,带到学校与同学交流。

  四、课后反思。

  新课程倡导学生主动参与、乐于探究、勤于动手的学习方式,培养学生收集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流与合作的能力。本节课教师通过创设宽松、愉悦 、民主、和谐的课堂教学氛围,引导学生积极主动参与学习活动。如通过“游戏活动”,让学生在“玩”中学习。如“游戏趣味题”中“教师的评说”,能唤起学生学习的热情。如“自我习作、操作表演、大家共赏”,享受成功的愉悦,可激发学生探知的*。如让学生剪、折、画、量、议、找……多种感官参与活动,可培养学生的动手、实践能力,学会探索的方法。如通过学生评价教师、学生,师生平等相待,可解放学生的脑、手、眼,让学生大胆地想、放开去说、随心地做,有利于培养学生的创新精神和探究能力。教学中师生互动、生生互动、民主平等、开放自由、心心相映、情感交融……课堂充满了生命活力,这样教学有力地促进了学生学习方式的改变。置身于这样的学习情境之中,真正达到了“让学生享受学习”的意境。

北师大版小学数学六年级上册《圆的认识》教案 篇14

  教学目标

  知识与技能:

  (1)认识圆,知道圆的各部分名称。

  (2)使学生掌握圆的特征,理解和掌握在同一个圆里,半径和直径的关系,能在同一个圆里,找出任意的半径和直径并且会自主完成已知半径求直径或已知直径求半径的题目。

  (3)使学生初步学会用圆规画圆。能用圆规画出已知半径大小的圆或已知直径大小的圆。

  过程与方法:

  (1)经历动手操作的活动过程,培养学生作图能力。

  (2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。

  (3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。

  情感、态度与价值观:

  通过对圆的认识,感受到美源于生活,体验圆与日常生活密切相关,感悟数学知识的魅力。

  教学重点:圆的基本特征及半径与直径的相互关系。

  解决措施:通过让学生折一折、画一画、量一量、猜一猜、比一比等活动让学生理解圆的基本特征及半径与直径的相互关系。

  教学难点:如何让学生理解用圆规画圆的原理。

  解决措施:通过展示学生用圆规画出来的圆,引导学生进行小组讨论:画得不好看和画得好看的圆里面的线段究竟分别有什么特征,然后师生共同验证,让学生充分理解利用圆规画圆的原理。

  教学设计思路

  一、复习旧知,导入新课

  1、猜图形游戏。

  2、对比椭圆和圆。

  二、突出主题,探究新知

  (一)认识圆的各部分名称及特征

  1、认识圆的各部分名称及半径和直径的关系

  2、练习1、2

  (二)小组学习用圆规画圆

  1、介绍用圆规画圆并认识圆规

  2、根据要求学习用圆规画圆

  (1)解释画圆的原理。

  (2)归纳画圆的步骤

  三、应用特征,解决问题

  (一)判断题

  (二)拓展延伸

  四、总结评价

  五、作业

  依据的理论

  新课程标准指出:“教师应激发学生的学习积极性,为学生搭建自主探索,合作交流的平台,给学生提供充分从事数学活动的机会,帮助他们真正理解和掌握基本的数学知识与技能、数学思想和方法这是广大教师共同追求的目标。”基于这样的认识,本节课的教学设计主要突出体现以下两个特点:

  1、有机整合教学资源,体现教学设计的实效性。在组织教学过程中,主要通过自学,小组交流等学习方式,促进学生有效地学习圆的基本特征及用圆规画圆的方法。

  2、能在不断的设问中,引起学生思维的碰撞,激发学生的学习兴趣。

  课后反思:

  圆的周长

  【教学目标】

  1.通过小组合作探究,实际测量计算理解圆周率的意义。

  2.通过对比分析掌握圆周长的计算公式。

  3.能用圆的周长的计算公式解决一些简单的数学问题。

  4.通过对圆周率的计算,渗透爱国主义的思想。

  【教学重、难点】

  重点:推导圆的周长的计算公式,准确计算圆的周长。

  难点:理解圆周率的意义。

  【教学过程】

  一、情景引入

  出示一块钟表

  问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?

  学生猜想。

  教师演示小秒针的运动过程,证实学生的猜想是否正确。

  问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?

  生:先计算出走一圈的路程有多长,在计算出走60圈的长度。

  师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)

  (设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

  二、动手量一量

  学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。

  物品名称

  周长

  直径

  1号圆

  2号圆

  3号圆

  4号圆

  教师评价学生小组合作的情况。

  (设计目的:强调学生的小组合作意识)

  师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。

  学生展示小组的成果。

  (设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)

  三、对比分析

  师:观察一下我们得到的几组数据,你发现什么规律了吗?

  学生自由谈。

  学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。

  师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。

  课件展示圆的周长的测量方法。

  (设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)

  课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。

  (设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)

  小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。

  你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?

  学生自由谈。

  我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

  (设计目的:通过学生讲故事渗透爱国主义思想)

  小结2:你能通过分析表格得到圆的周长的计算公式了吗?

  学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

  圆的周长(用字母c表示)计算公式:c=πd或c=2πr

  四、动手做一做

  下面我们来看看怎样应用圆的周长计算公式来解决问题。

  1.计算圆的周长

  实物投影展示学生的解题过程

  (设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)

  2.一个圆形喷水池的半径是5m,它的周长是多少米?

  (设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)

  小组交流错误原因。(可让其他学生避免同样的错误)

  (设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)

  4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。

  (设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)

  五.你能说说在这一节课中你有什么收获吗?

  可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。

  六、课外合作:

  小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。

  课后反思:

  圆的面积

  【教学目标】

  1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2.能够利用公式进行简单的面积计算。

  3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  【教、学具准备】

  1.cai课件;

  2.把圆8等分、16等分和32等分的硬纸板若干个;

  3.剪刀若干把。

  【教学过程】

  一、尝试转化,推导公式

  1.确定“转化”的策略。

  师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

  预设:

  引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

  师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

  师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

  2.尝试“转化”。

  师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

  请大家看屏幕(利用课件演示),老师先给大家一点提示。

  师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?

  师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示) 跟圆形有什么关系呢?

  预设:

  引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。

  师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

  预设:

  学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。

  3.探究联系。

  师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

  预设:

  分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。

  师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。

  师:谁来告诉大家,它们的面积有没有改变?

  师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

  师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。

  4.推导公式。

  师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

  师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?

  预设:

  根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。

  师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?

  预设:

  教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。

  师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?

  预设:

  老师根据学生的回答进行相关的板书。

  师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。

  二、运用公式,解决问题

  1.教学例1。

  师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

  预设:

  教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

  2.完成做一做。

  师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。

  订正。

  3.教学例2。

  师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

  师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

  师:找到解决问题的方法了吗?

  师:好的,就按同学们想到的方法算一算这个圆环的面积吧!

  交流,订正。

  三、课堂作业。

  教材第70页第 2、3、4题。

  四、课堂小结

  师:同学们,通过这节课的学习,你有什么收获?

  圆面积的综合应用

  教学目标:

  1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。

  2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。

  3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。

  教学重点:掌握计算组合图形面积的方法,并能准确计算。

  教学难点:对组合图形进行分析。

  教学准备:课件、学具、作业纸。

  教学过程:

  一、创设情景,谈话引入

  1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。

  2.课件展示:鸟巢和水立方等建筑,精美的雕窗。

  二、探究新知,解决问题

  1.实践操作(课件出示教材例3中的雕窗插图)

  师:谁能说说这两种设计有什么联系和区别?

  预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。

  师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。

  预设2:都是由圆和正方形这两个图形组成的。

  师:也就是我们以前学过的什么图形?(组合图形)你能用学具组合出这两个图形吗?

  学生操作,作品展示。

  2.解决问题

  (1)阅读与理解

  师:怎样计算正方形和圆之间部分的面积?需要什么条件?先想一想,再同桌交流。

  预设1:正方形的面积减去圆的面积;圆的面积减去正方形的面积。

  预设2:需要知道正方形的边长和圆的半径。

  师:只告诉你这两个圆的半径都是1米,你能计算出这两部分的面积吗?

  学生思考,尝试练习。

  (2)分析与解答

  师:谁来说说你是怎么计算左图中正方形和圆之间部分的面积的?

  预设:正方形的面积是2×2=4(m2),减去圆的面积(3.14 m2),等于0.86 m2。

  师:你是怎么知道正方形的边长的?

  根据学生回答课件展示:正方形的边长=圆的直径。

  师:在右图中你能得出正方形的边长吗?(不能)该如何计算正方形的面积呢?

  预设1:可以把右图中的正方形看成两个三角形。

  追问:三角形的底和高分别是多少?相当于什么?(底是2 m,高是1 m,相当于圆的直径和半径。)

  结合学生回答课件展示。

  预设2:也可以看成四个三角形。

  师:这样一来,每个三角形的底和高各是多少呢?相当于什么?(底和高都是1 m,相当于圆的半径。)

  师:那么,圆与正方形之间部分的面积可以怎样计算?(学生练习,分析订正。)

  三、回顾反思,理解算法

  师:如果两个圆的半径都是 ,结果又是怎样的?结合左图我们一起来算一算。

  左图: 。

  师:像这样,你能计算出右图中正方形和圆之间部分的面积吗?

  学生练习,反馈讲评。

  右图: 。

  师:我们可以把题目中的条件 =1 m代入上述的两个结果算一算,有什么发现?

  预设:和之前计算的结果完全一致。

  四、课堂练习,强化认识

  1.基础练习

  (1)有一块长20米,宽15米的长方形草坪,在它的中间安装了一个射程为5米的自动旋转喷灌装置,它不能喷灌到的草坪面积是多少?

  师:求不能喷灌到的草坪面积,就是求什么?

  (2)一件古代铜钱的模型(如图),已知外圆的直径是20cm,中间正方形的边长为6cm。这个模型的面积是多少?

  师:可以用怎样的方法验证结果是否正确?

  2.拓展练习

  在每个正方形中分别作一个最大的圆,并完成下表。

  采用四人小组合作的方式完成,小组汇报展示。

  师:你发现了什么?如果正方形的边长为 ,你能得出怎样的结论?

  正方形面积为 ,圆的面积为 ,面积之比为 。

  师:如果是在圆内作一个最大的正方形,又会有怎样的关系呢?这个问题就作为今天的课外作业。

  五、全课总结,畅谈收获

  通过本节课的学习,你有什么收获?谁来说一说。

  课后反思:

  扇形

  教学目标 :1圆心角以及他们间的对应关系,并能准确判断圆心角和扇形。

  2、 理解扇形概念知道扇形有一条对称轴以及圆心角的大小决定扇形面积。

  一、导入:

  请将手中的两个圆一个平均分成4份剪下其中的一份,另一个平均分成2份剪下其中的一份,观察手中的图形,他们像什么?(像扇子)

  今天我们就一起认识扇形。(板书课题:认识扇形)

  二、新授:

  1、认识弧:出示一个圆,在上面任意点两个点a、b

  (1)a、b两点在什么位置?(圆上)

  (2)师:圆上a、b两点间的部分叫弧。课件演示

  (3)追问:圆上a、b两点间的部分叫什么?什么叫弧?

  (板书:弧:圆上a、b两点间的部分)

  读作:弧ab

  (4)请在圆上用彩笔画一条弧。你是怎样画的?(边用手指描弧边说弧ab)

  2、认识圆心角:课件演示连接oa和ob

  (1)线段oa 、ob是圆的什么?(半径)

  半径oa 、ob所夹的部分叫什么?(角)

  这个角的顶点在圆的什么位置?(圆心)

  师:顶点在圆心的角叫圆心角。什么叫圆心角?

  (板书    圆心角:顶点在圆心的角)

  (2)请学生在圆上标出圆心角。谁是圆心角?(∠a ob是圆心角)

  (3)练习题 (略)下图中,哪些角是圆心角?说明理由

  3、认识扇形:

  (1)用鼠标指扇形一圈,我们把围成的图形叫扇形,什么叫扇形?交流

  由圆心角的两条半径和圆心角所对的弧围成的图形叫扇形。(板书;扇形)

  (2)同学之间用手描一下自己手中的圆,互说哪一部分是扇形。

  (3)二次用剪好的扇形,观察桌上你刚才剪好的图形,请你选择其中的一个图形说一说,它是扇形吗,为什么?

  (4)师课件演示:黄色部分是什么图形?(扇形)为什么?

  4、说一说:

  (1)演示:活动的扇形。圆心角一条半径不动,另一条半径不断转动,呈现不同的扇形。当两条半径重合时,形成一个圆。

  通过观察,你发现了什么?(扇形是圆的一部分)

  (2)在生活中,你见到哪些物体的外形是扇形?

  (如:扇子外形、贝壳外形、树叶外形等)

  (3)老师也搜集了一些扇形的图片,请大家欣赏一下

  三、拓展应用

  练习十六2题

  四、总   结

  今天有什么收获?还有什么疑问?  

  作业设计 练习十六3、4题

  板书设计

北师大版小学数学六年级上册《圆的认识》教案 篇15

  一、说教材

  (一)说教学内容

  “圆的认识”一是北师版九年义务教育六年制小学数学第十一册第一单元“圆”中的第一节课。这节课的内容包括:圆的特征、圆心、直径,半径和会用圆规画圆。

  (二)教材简析

  “圆的认识”是在学生直观认识圆和已经较系统地认识了平面上直线图形的基础上进行教学的。它是学习曲线图形的开始。它与“圆的周长和面积”、“轴对称图形”的学习关系十分密切。所以正确树立圆的表象,掌握圆的特征,是本课的首要任务。

  (三)教学目标

  根据教学内容、课标要求以及学生的认识特点、年龄特征确定本节课的教学目标为:

  1、 结合生活实际,通过观察操作等认识圆的特征;认识同一个圆里半径都相等和直径都相等。体会圆的特征及圆心和半径的作用,会用圆规画圆。

  2、结合具体情境体验数学与日常生活密切联系,能用圆的知识来解释生活中的简单现象。

  3、通过通过观察操作想象等活动,发展学生的空间观念。

  (四)教学重点、难点本节课的教学重点:体会圆的特征及圆心和半径的作用,会用圆规画圆。

  难点:是掌握圆的特征;

  二、说教法、学法

  根据教学内容知识间的内在联系和学生的认知规律,遵循教学有法,教无定法,贵在得法的原则:

  1、根据本节课的教学内容及学生的认识水平和认知规律,这节课采用演示、操作等直观方法进行教学。通过多媒体演示和学生的画、折、量等动手操作,使学生获得充足的、丰富的感性材料。在充分感知的基础上,通过叙述操作过程,把感知经过思维内化为表象,并在教师的指导下,抽象概括出圆心、半径、直径等概念,使学生掌握圆的知识,并学会思维的方法。

  2、在教学中充分利用教材,采用导读法和讨论法,引导学生通过自主学习去思考问题,掌握知识。指导学生通过自学教材和讨论,认识圆的特征,

  三、 说教学程序

  (一)套圈游戏引入,通过前两副套圈游戏的图画,引导学生思考得出游戏的不公平而需要设计一个公平的游戏方案:围成一个圆形。

  (二)观察、操作、探求新知

  1、学生动手通过初步画圆剪圆摸圆感知圆不同于以前所学的各种平面图形。它是一种平面曲线图形。

  2、认识圆的各部分名称

  通过自学认识圆心,半径,直径。形纸片,通过折,画,量让学生明白这些折痕相交于圆中心的一点,这一点叫做圆心。进一步加深理解半径和直径的意义。

  这部分教学,通过学生折一折,画一画,量一量的操作,在有了充分感知的基础上,通过语言描述操作,把感知内化为表象,并在老师的指导下,抽象概括出圆心、半径、直径等概念。

  3圆心和半径的作用:

  再次通过学生动手按定点,定长的要求画两个圆,并进行比较概括圆心确定圆的位置,半径确定圆的大小。

  (三)练习

  通过基本的填空判断练习使学生能够巩固本节课所学知识。并通过“车轮为什么做成圆的”等问题让学生用圆的知识解释生活中的简单问题。

  四、反思

  在这一节课忽视了教给学生如何正确使用圆规画圆。