高三数学复习教案 篇1
●知识梳理
函数的综合应用主要体现在以下几方面:
1.函数内容本身的相互综合,如函数概念、性质、图象等方面知识的综合.
2.函数与其他数学知识点的综合,如方程、不等式、数列、解析几何等方面的内容与函数的综合.这是高考主要考查的内容.
3.函数与实际应用问题的综合.
●点击双基
1.已知函数f(x)=lg(2x-b)(b为常数),若x[1,+)时,f(x)0恒成立,则
A.b1 B.b1 C.b1 D.b=1
解析:当x[1,+)时,f(x)0,从而2x-b1,即b2x-1.而x[1,+)时,2x-1单调增加,
b2-1=1.
答案:A
2.若f(x)是R上的减函数,且f(x)的图象经过点A(0,3)和B(3,-1),则不等式|f(x+1)-1|2的解集是___________________.
解析:由|f(x+1)-1|2得-2
又f(x)是R上的减函数,且f(x)的图象过点A(0,3),B(3,-1),
f(3)
答案:(-1,2)
●典例剖析
【例1】 取第一象限内的点P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差数列,1,y1,y2,2依次成等比数列,则点P1、P2与射线l:y=x(x0)的关系为
A.点P1、P2都在l的上方 B.点P1、P2都在l上
C.点P1在l的下方,P2在l的上方 D.点P1、P2都在l的下方
剖析:x1= +1= ,x2=1+ = ,y1=1 = ,y2= ,∵y1
P1、P2都在l的下方.
答案:D
【例2】 已知f(x)是R上的偶函数,且f(2)=0,g(x)是R上的奇函数,且对于xR,都有g(x)=f(x-1),求f(20xx)的值.
解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),
故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=
g(x-3)=f(x-4),也即f(x+4)=f(x),xR.
f(x)为周期函数,其周期T=4.
f(20xx)=f(4500+2)=f(2)=0.
评述:应灵活掌握和运用函数的奇偶性、周期性等性质.
【例3】 函数f(x)= (m0),x1、x2R,当x1+x2=1时,f(x1)+f(x2)= .
(1)求m的值;
(2)数列{an},已知an=f(0)+f( )+f( )++f( )+f(1),求an.
解:(1)由f(x1)+f(x2)= ,得 + = ,
4 +4 +2m= [4 +m(4 +4 )+m2].
∵x1+x2=1,(2-m)(4 +4 )=(m-2)2.
4 +4 =2-m或2-m=0.
∵4 +4 2 =2 =4,
而m0时2-m2,4 +4 2-m.
m=2.
(2)∵an=f(0)+f( )+f( )++f( )+f(1),an=f(1)+f( )+ f( )++f( )+f(0).
2an=[f(0)+f(1)]+[f( )+f( )]++[f(1)+f(0)]= + ++ = .
an= .
深化拓展
用函数的思想处理方程、不等式、数列等问题是一重要的思想方法.
【例4】 函数f(x)的定义域为R,且对任意x、yR,有f(x+y)=f(x)+f(y),且当x0时,f(x)0,f(1)=-2.
(1)证明f(x)是奇函数;
(2)证明f(x)在R上是减函数;
(3)求f(x)在区间[-3,3]上的最大值和最小值.
(1)证明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+ f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.从而有f(x)+f(-x)=0.
f(-x)=-f(x).f(x)是奇函数.
(2)证明:任取x1、x2R,且x10.f(x2-x1)0.
-f(x2-x1)0,即f(x1)f(x2),从而f(x)在R上是减函数.
(3)解:由于f(x)在R上是减函数,故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.从而最大值是6,最小值是-6.
深化拓展
对于任意实数x、y,定义运算y=ax+by+cxy,其中a、b、c是常数,等式右边的运算是通常的加法和乘法运算.现已知1*2=3,2*3=4,并且有一个非零实数m,使得对于任意实数x,都有m=x,试求m的值.
提示:由1*2=3,2*3=4,得
b=2+2c,a=-1-6c.
又由m=ax+bm+cmx=x对于任意实数x恒成立,
b=0=2+2c.
c=-1.(-1-6c)+cm=1.
-1+6-m=1.m=4.
答案:4.
●闯关训练
夯实基础
1.已知y=f(x)在定义域[1,3]上为单调减函数,值域为[4,7],若它存在反函数,则反函数在其定义域上
A.单调递减且最大值为7 B.单调递增且最大值为7
C.单调递减且最大值为3 D.单调递增且最大值为3
解析:互为反函数的两个函数在各自定义区间上有相同的增减性,f-1(x)的值域是[1,3].
答案:C
2.关于x的方程|x2-4x+3|-a=0有三个不相等的实数根,则实数a的值是___________________.
解析:作函数y=|x2-4x+3|的图象,如下图.
由图象知直线y=1与y=|x2-4x+3|的图象有三个交点,即方程|x2-4x+3|=1也就是方程|x2-4x+3|-1=0有三个不相等的实数根,因此a=1.
答案:1
3.若存在常数p0,使得函数f(x)满足f(px)=f(px- )(xR),则f(x)的一个正周期为__________.
解析:由f(px)=f(px- ),
令px=u,f(u)=f(u- )=f[(u+ )- ],T= 或 的整数倍.
答案: (或 的整数倍)
4.已知关于x的方程sin2x-2sinx-a=0有实数解,求a的取值范围.
解:a=sin2x-2sinx=(sinx-1)2-1.
∵-11,0(sinx-1)24.
a的范围是[-1,3].
5.记函数f(x)= 的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a1)的定义域为B.
(1)求A;
(2)若B A,求实数a的取值范围.
解:(1)由2- 0,得 0,
x-1或x1,即A=(-,-1)[1,+).
(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.
∵a1,a+12a.B=(2a,a+1).
∵B A,2a1或a+1-1,即a 或a-2.
而a1, 1或a-2.
故当B A时,实数a的取值范围是(-,-2][ ,1).
培养能力
6.(理)已知二次函数f(x)=x2+bx+c(b0,cR).
若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;若不存在,请说明理由.
解:设符合条件的f(x)存在,
∵函数图象的对称轴是x=- ,
又b0,- 0.
①当- 0,即01时,
函数x=- 有最小值-1,则
或 (舍去).
②当-1- ,即12时,则
(舍去)或 (舍去).
③当- -1,即b2时,函数在[-1,0]上单调递增,则 解得
综上所述,符合条件的函数有两个,
f(x)=x2-1或f(x)=x2+2x.
(文)已知二次函数f(x)=x2+(b+1)x+c(b0,cR).
若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;若不存在,请说明理由.
解:∵函数图象的对称轴是
x=- ,又b0,- - .
设符合条件的f(x)存在,
①当- -1时,即b1时,函数f(x)在[-1,0]上单调递增,则
②当-1- ,即01时,则
(舍去).
综上所述,符合条件的函数为f(x)=x2+2x.
7.已知函数f(x)=x+ 的定义域为(0,+),且f(2)=2+ .设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM||PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.
解:(1)∵f(2)=2+ =2+ ,a= .
(2)设点P的坐标为(x0,y0),则有y0=x0+ ,x00,由点到直线的距离公式可知,|PM|= = ,|PN|=x0,有|PM||PN|=1,即|PM||PN|为定值,这个值为1.
(3)由题意可设M(t,t),可知N(0,y0).
∵PM与直线y=x垂直,kPM1=-1,即 =-1.解得t= (x0+y0).
又y0=x0+ ,t=x0+ .
S△OPM= + ,S△OPN= x02+ .
S四边形OMPN=S△OPM+S△OPN= (x02+ )+ 1+ .
当且仅当x0=1时,等号成立.
此时四边形OMPN的面积有最小值1+ .
探究创新
8.有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).
(1)请你求出这种切割、焊接而成的长方体的最大容积V1;
(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2V1.
解:(1)设切去正方形边长为x,则焊接成的长方体的底面边长为4-2x,高为x,
V1=(4-2x)2x=4(x3-4x2+4x)(0
V1=4(3x2-8x+4).
令V1=0,得x1= ,x2=2(舍去).
而V1=12(x- )(x-2),
又当x 时,V10;当
当x= 时,V1取最大值 .
(2)重新设计方案如下:
如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;如图③,将图②焊成长方体容器.
新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积V2=321=6,显然V2V1.
故第二种方案符合要求.
●思悟小结
1.函数知识可深可浅,复习时应掌握好分寸,如二次函数问题应高度重视,其他如分类讨论、探索性问题属热点内容,应适当加强.
2.数形结合思想贯穿于函数研究的各个领域的全部过程中,掌握了这一点,将会体会到函数问题既千姿百态,又有章可循.
●教师下载中心
教学点睛
数形结合和数形转化是解决本章问题的重要思想方法,应要求学生熟练掌握用函数的图象及方程的曲线去处理函数、方程、不等式等问题.
拓展题例
【例1】 设f(x)是定义在[-1,1]上的奇函数,且对任意a、b[-1,1],当a+b0时,都有 0.
(1)若ab,比较f(a)与f(b)的大小;
(2)解不等式f(x- )
(3)记P={x|y=f(x-c)},Q={x|y=f(x-c2)},且PQ= ,求c的取值范围.
解:设-1x1
0.
∵x1-x20,f(x1)+f(-x2)0.
f(x1)-f(-x2).
又f(x)是奇函数,f(-x2)=-f(x2).
f(x1)
f(x)是增函数.
(1)∵ab,f(a)f(b).
(2)由f(x- )
- .
不等式的解集为{x|- }.
(3)由-11,得-1+c1+c,
P={x|-1+c1+c}.
由-11,得-1+c21+c2,
Q={x|-1+c21+c2}.
∵PQ= ,
1+c-1+c2或-1+c1+c2,
解得c2或c-1.
【例2】已知函数f(x)的图象与函数h(x)=x+ +2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)x+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
(理)若g(x)=f(x)+ ,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
解:(1)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上.
2-y=-x+ +2.
y=x+ ,即f(x)=x+ .
(2)(文)g(x)=(x+ )x+ax,
即g(x)=x2+ax+1.
g(x)在(0,2]上递减 - 2,
a-4.
(理)g(x)=x+ .
∵g(x)=1- ,g(x)在(0,2]上递减,
1- 0在x(0,2]时恒成立,
即ax2-1在x(0,2]时恒成立.
∵x(0,2]时,(x2-1)max=3,
a3.
【例3】在4月份(共30天),有一新款服装投放某专卖店销售,日销售量(单位:件)f(n)关于时间n(130,nN*)的函数关系如下图所示,其中函数f(n)图象中的点位于斜率为5和-3的两条直线上,两直线的交点的横坐标为m,且第m天日销售量最大.
(1)求f(n)的表达式,及前m天的销售总数;
(2)按规律,当该专卖店销售总数超过400件时,社会上流行该服装,而日销售量连续下降并低于30件时,该服装的流行会消失.试问该服装在社会上流行的天数是否会超过10天?并说明理由.
解:(1)由图形知,当1m且nN*时,f(n)=5n-3.
由f(m)=57,得m=12.
f(n)=
前12天的销售总量为
5(1+2+3++12)-312=354件.
(2)第13天的销售量为f(13)=-313+93=54件,而354+54400,
从第14天开始销售总量超过400件,即开始流行.
设第n天的日销售量开始低于30件(1221.
从第22天开始日销售量低于30件,
即流行时间为14号至21号.
该服装流行时间不超过10天.
高三数学复习教案 篇2
教学目标
知识目标等差数列定义等差数列通项公式
能力目标掌握等差数列定义等差数列通项公式
情感目标培养学生的观察、推理、归纳能力
教学重难点
教学重点等差数列的概念的理解与掌握
等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用
教学过程
由《红高粱》主题曲“酒神曲”引入等差数列定义
问题:多媒体演示,观察————发现?
一、等差数列定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。
例1:观察下面数列是否是等差数列:…。
二、等差数列通项公式:
已知等差数列{an}的首项是a1,公差是d。
则由定义可得:
a2—a1=d
a3—a2=d
a4—a3=d
……
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。
分析:知道a1,d,求an。代入通项公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差数列10,8,6,4…的第20项。
分析:根据a1=10,d=—2,先求出通项公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。
分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。
解:由题意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
练习
1、判断下列数列是否为等差数列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
2、等差数列{an}的前三项依次为a—6,—3a—5,—10a—1,则a等于
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在数列{an}中a1=1,an=an+1+4,则a10=。
提示:d=an+1—an=—4
教师继续提出问题
已知数列{an}前n项和为……
作业
P116习题3。21,2
高三数学复习教案 篇3
1.如图,已知直线L: 的右焦点F,且交椭圆C于A、B两点,点A、B在直线 上的射影依次为点D、E。
(1)若抛物线 的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。
(文)若 为x轴上一点,求证:
2.如图所示,已知圆 定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足 ,点N的轨迹为曲线E。
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足 的取值范围。
3.设椭圆C: 的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q, 且
⑴求椭圆C的离心率;
⑵若过A、Q、F三点的圆恰好与直线
l: 相切,求椭圆C的方程.
4.设椭圆 的离心率为e=
(1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.
(2)求b为何值时,过圆x2+y2=t2上一点M(2, )处的切线交椭圆于Q1、Q2两点,而且OQ1OQ2.
5.已知曲线 上任意一点P到两个定点F1(- ,0)和F2( ,0)的距离之和为4.
(1)求曲线 的方程;
(2)设过(0,-2)的直线 与曲线 交于C、D两点,且 为坐标原点),求直线 的方程.
6.已知椭圆 的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).
(Ⅰ)当m+n0时,求椭圆离心率的范围;
(Ⅱ)直线AB与⊙P能否相切?证明你的结论.
7.有如下结论:圆 上一点 处的切线方程为 ,类比也有结论:椭圆 处的切线方程为 ,过椭圆C: 的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.
(1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积
8.已知点P(4,4),圆C: 与椭圆E: 有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(Ⅰ)求m的值与椭圆E的方程;
(Ⅱ)设Q为椭圆E上的一个动点,求 的取值范围.
9.椭圆的对称中心在坐标原点,一个顶点为 ,右焦点 与点 的距离为 。
(1)求椭圆的方程;
(2)是否存在斜率 的直线 : ,使直线 与椭圆相交于不同的两点 满足 ,若存在,求直线 的倾斜角 ;若不存在,说明理由。
10.椭圆方程为 的一个顶点为 ,离心率 。
(1)求椭圆的方程;
(2)直线 : 与椭圆相交于不同的两点 满足 ,求 。
11.已知椭圆 的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作 ,其中圆心P的坐标为 .
(1) 若椭圆的离心率 ,求 的方程;
(2)若 的圆心在直线 上,求椭圆的方程.
12.已知直线 与曲线 交于不同的两点 , 为坐标原点.
(Ⅰ)若 ,求证:曲线 是一个圆;
(Ⅱ)若 ,当 且 时,求曲线 的离心率 的取值范围.
13.设椭圆 的左、右焦点分别为 、 ,A是椭圆C上的一点,且 ,坐标原点O到直线 的距离为 .
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过Q的直线l交x轴于点 ,较y轴于点M,若 ,求直线l的方程.
14.已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点 的切线方程为 为常数).
(I)求抛物线方程;
(II)斜率为 的直线PA与抛物线的另一交点为A,斜率为 的直线PB与抛物线的另一交点为B(A、B两点不同),且满足 ,求证线段PM的中点在y轴上;
(III)在(II)的条件下,当 时,若P的坐标为(1,-1),求PAB为钝角时点A的纵坐标的取值范围.
15.已知动点A、B分别在x轴、y轴上,且满足|AB|=2,点P在线段AB上,且
设点P的轨迹方程为c。
(1)求点P的轨迹方程C;
(2)若t=2,点M、N是C上关于原点对称的两个动点(M、N不在坐标轴上),点Q
坐标为 求△QMN的面积S的最大值。
16.设 上的两点,
已知 , ,若 且椭圆的离心率 短轴长为2, 为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
17.如图,F是椭圆 (a0)的`一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为 .点C在x轴上,BCBF,B,C,F三点确定的圆M恰好与直线l1: 相切.
(Ⅰ)求椭圆的方程:
(Ⅱ)过点A的直线l2与圆M交于PQ两点,且 ,求直线l2的方程.
18.如图,椭圆长轴端点为 , 为椭圆中心, 为椭圆的右焦点,且 .
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为 ,直线 交椭圆于 两点,问:是否存在直线 ,使点 恰为 的垂心?若存在,求出直线 的方程;若不存在,请说明理由.
19.如图,已知椭圆的中心在原点,焦点在 轴上,离心率为 ,且经过点 . 直线 交椭圆于 两不同的点.
20.设 ,点 在 轴上,点 在 轴上,且
(1)当点 在 轴上运动时,求点 的轨迹 的方程;
(2)设 是曲线 上的点,且 成等差数列,当 的垂直平分线与 轴交于点 时,求 点坐标.
21.已知点 是平面上一动点,且满足
(1)求点 的轨迹 对应的方程;
(2)已知点 在曲线 上,过点 作曲线 的两条弦 和 ,且 ,判断:直线 是否过定点?试证明你的结论.
22.已知椭圆 的中心在坐标原点,焦点在坐标轴上,且经过 、 、 三点.
(1)求椭圆 的方程:
(2)若点D为椭圆 上不同于 、 的任意一点, ,当 内切圆的面积最大时。求内切圆圆心的坐标;
(3)若直线 与椭圆 交于 、 两点,证明直线 与直线 的交点在直线 上.
23.过直角坐标平面 中的抛物线 的焦点 作一条倾斜角为 的直线与抛物线相交于A,B两点。
(1)用 表示A,B之间的距离;
(2)证明: 的大小是与 无关的定值,
并求出这个值。
24.设 分别是椭圆C: 的左右焦点
(1)设椭圆C上的点 到 两点距离之和等于4,写出椭圆C的方程和焦点坐标
(2)设K是(1)中所得椭圆上的动点,求线段 的中点B的轨迹方程
(3)设点P是椭圆C 上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM ,PN的斜率都存在,并记为 试探究 的值是否与点P及直线L有关,并证明你的结论。
25.已知椭圆 的离心率为 ,直线 : 与以原点为圆心、以椭圆 的短半轴长为半径的圆相切.
(I)求椭圆 的方程;
(II)设椭圆 的左焦点为 ,右焦点 ,直线 过点 且垂直于椭圆的长轴,动直线 垂直 于点 ,线段 垂直平分线交 于点 ,求点 的轨迹 的方程;
(III)设 与 轴交于点 ,不同的两点 在 上,且满足 求 的取值范围.
26.如图所示,已知椭圆 : , 、 为
其左、右焦点, 为右顶点, 为左准线,过 的直线 : 与椭圆相交于 、
两点,且有: ( 为椭圆的半焦距)
(1)求椭圆 的离心率 的最小值;
(2)若 ,求实数 的取值范围;
(3)若 , ,
求证: 、 两点的纵坐标之积为定值;
27.已知椭圆 的左焦点为 ,左右顶点分别为 ,上顶点为 ,过 三点作圆 ,其中圆心 的坐标为
(1)当 时,椭圆的离心率的取值范围
(2)直线 能否和圆 相切?证明你的结论
28.已知点A(-1,0),B(1,-1)和抛物线. ,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(I)证明: 为定值;
(II)若△POM的面积为 ,求向量 与 的夹角;
(Ⅲ) 证明直线PQ恒过一个定点.
29.已知椭圆C: 上动点 到定点 ,其中 的距离 的最小值为1.
(1)请确定M点的坐标
(2)试问是否存在经过M点的直线 ,使 与椭圆C的两个交点A、B满足条件 (O为原点),若存在,求出 的方程,若不存在请说是理由。
30.已知椭圆 ,直线 与椭圆相交于 两点.
(Ⅰ)若线段 中点的横坐标是 ,求直线 的方程;
(Ⅱ)在 轴上是否存在点 ,使 的值与 无关?若存在,求出 的值;若不存在,请说明理由.
31.直线AB过抛物线 的焦点F,并与其相交于A、B两点。Q是线段AB的中点,M是抛物线的准线与y轴的交点.O是坐标原点.
(I)求 的取值范围;
(Ⅱ)过 A、B两点分剐作此撒物线的切线,两切线相交于N点.求证: ∥ ;
(Ⅲ) 若P是不为1的正整数,当 ,△ABN的面积的取值范围为 时,求该抛物线的方程.
32.如图,设抛物线 ( )的准线与 轴交于 ,焦点为 ;以 、 为焦点,离心率 的椭圆 与抛物线 在 轴上方的一个交点为 .
(Ⅰ)当 时,求椭圆的方程及其右准线的方程;
(Ⅱ)在(Ⅰ)的条件下,直线 经过椭圆 的右焦点 ,与抛物线 交于 、 ,如果以线段 为直径作圆,试判断点 与圆的位置关系,并说明理由;
(Ⅲ)是否存在实数 ,使得 的边长是连续的自然数,若存在,求出这样的实数 ;若不存在,请说明理由.
33.已知点 和动点 满足: ,且存在正常数 ,使得 。
(1)求动点P的轨迹C的方程。
(2)设直线 与曲线C相交于两点E,F,且与y轴的交点为D。若 求 的值。
34.已知椭圆 的右准线 与 轴相交于点 ,右焦点 到上顶点的距离为 ,点 是线段 上的一个动点.
(I)求椭圆的方程;
(Ⅱ)是否存在过点 且与 轴不垂直的直线 与椭圆交于 、 两点,使得 ,并说明理由.
35.已知椭圆C: ( .
(1)若椭圆的长轴长为4,离心率为 ,求椭圆的标准方程;
(2)在(1)的条件下,设过定点 的直线 与椭圆C交于不同的两点 ,且 为锐角(其中 为坐标原点),求直线 的斜率k的取值范围;
(3)如图,过原点 任意作两条互相垂直的直线与椭圆 ( )相交于 四点,设原点 到四边形 一边的距离为 ,试求 时 满足的条件.
36.已知 若过定点 、以 ( )为法向量的直线 与过点 以 为法向量的直线 相交于动点 .
(1)求直线 和 的方程;
(2)求直线 和 的斜率之积 的值,并证明必存在两个定点 使得 恒为定值;
(3)在(2)的条件下,若 是 上的两个动点,且 ,试问当 取最小值时,向量 与 是否平行,并说明理由。
37.已知点 ,点 (其中 ),直线 、 都是圆 的切线.
(Ⅰ)若 面积等于6,求过点 的抛物线 的方程;
(Ⅱ)若点 在 轴右边,求 面积的最小值.
38.我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题。
(1)设F1、F2是椭圆 的两个焦点,点F1、F2到直线 的距离分别为d1、d2,试求d1d2的值,并判断直线L与椭圆M的位置关系。
(2)设F1、F2是椭圆 的两个焦点,点F1、F2到直线
(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1d2的值。
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。
39.已知点 为抛物线 的焦点,点 是准线 上的动点,直线 交抛物线 于 两点,若点 的纵坐标为 ,点 为准线 与 轴的交点.
(Ⅰ)求直线 的方程;(Ⅱ)求 的面积 范围;
(Ⅲ)设 , ,求证 为定值.
40.已知椭圆 的离心率为 ,直线 : 与以原点为圆心、以椭圆 的短半轴长为半径的圆相切.
(I)求椭圆 的方程;
(II)设椭圆 的左焦点为 ,右焦点 ,直线 过点 且垂直于椭圆的长轴,动直线 垂直 于点 ,线段 垂直平分线交 于点 ,求点 的轨迹 的方程;
(III)设 与 轴交于点 ,不同的两点 在 上,且满足 求 的取值范围.
41.已知以向量 为方向向量的直线 过点 ,抛物线 : 的顶点关于直线 的对称点在该抛物线的准线上.
(1)求抛物线 的方程;
(2)设 、 是抛物线 上的两个动点,过 作平行于 轴的直线 ,直线 与直线 交于点 ,若 ( 为坐标原点, 、 异于点 ),试求点 的轨迹方程。
42.如图,设抛物线 ( )的准线与 轴交于 ,焦点为 ;以 、 为焦点,离心率 的椭圆 与抛物线 在 轴上方的一个交点为 .
(Ⅰ)当 时,求椭圆的方程及其右准线的方程;
(Ⅱ)在(Ⅰ)的条件下,直线 经过椭圆 的右焦点 ,
与抛物线 交于 、 ,如果以线段 为直径作圆,
试判断点 与圆的位置关系,并说明理由;
(Ⅲ)是否存在实数 ,使得 的边长是连续的自然数,若存在,求出这样的实数 ;若不存在,请说明理由.
43.设椭圆 的一个顶点与抛物线 的焦点重合, 分别是椭圆的左、右焦点,且离心率 且过椭圆右焦点 的直线 与椭圆C交于 两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在直线 ,使得 .若存在,求出直线 的方程;若不存在,说明理由.
(Ⅲ)若AB是椭圆C经过原点O的弦, MN AB,求证: 为定值.
44.设 是抛物线 的焦点,过点M(-1,0)且以 为方向向量的直线顺次交抛物线于 两点。
(Ⅰ)当 时,若 与 的夹角为 ,求抛物线的方程;
(Ⅱ)若点 满足 ,证明 为定值,并求此时△ 的面积
45.已知点 ,点 在 轴上,点 在 轴的正半轴上,点 在直线 上,且满足 .
(Ⅰ)当点 在 轴上移动时,求点 的轨迹 的方程;
(Ⅱ)设 、 为轨迹 上两点,且 0, ,求实数 ,
使 ,且 .
46.已知椭圆 的右焦点为F,上顶点为A,P为C 上任一点,MN是圆 的一条直径,若与AF平行且在y轴上的截距为 的直线 恰好与圆 相切。
(1)已知椭圆 的离心率;
(2)若 的最大值为49,求椭圆C 的方程.
高三数学复习教案 篇4
本文题目:高三数学复习教案:古典概型复习教案
【高考要求】古典概型(B); 互斥事件及其发生的概率(A)
【学习目标】:1、了解概率的频率定义,知道随机事件的发生是随机性与规律性的统一;
2、 理解古典概型的特点,会解较简单的古典概型问题;
3、 了解互斥事件与对立事件的概率公式,并能运用于简单的概率计算.
【知识复习与自学质疑】
1、古典概型是一种理想化的概率模型,假设试验的结果数具有 性和 性.解古典概型问题关键是判断和计数,要掌握简单的记数方法(主要是列举法).借助于互斥、对立关系将事件分解或转化是很重要的方法.
2、(A)在10件同类产品中,其中8件为正品,2件为次品。从中任意抽出3件,则下列4个事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是 .
3、(A)从5个红球,1个黄球中随机取出2个,所取出的两个球颜色不同的概率是 。
4、(A)同时抛两个各面上分别标有1、2、3、4、5、6均匀的正方体玩具一次,向上的两个数字之和为3的概率是 .
5、(A)某人射击5枪,命中3枪,三枪中恰好有2枪连中的概率是 .
6、(B)若实数 ,则曲线 表示焦点在y轴上的双曲线的概率是 .
【例题精讲】
1、(A)甲、乙两人参加知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
2、(B)黄种人群中各种血型的人所占的比例如下表所示:
血型 A B AB O
该血型的人所占的比(%) 28 29 8 35
已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:
(1) 任找一个人,其血可以输给小明的概率是多少?
(2) 任找一个人,其血不能输给小明的概率是多少?
3、(B)将两粒骰子投掷两次,求:(1)向上的点数之和是8的概率;(2)向上的点数之和不小于8 的概率;(3)向上的点数之和不超过10的概率.
4、(B)将一个各面上均涂有颜色的正方体锯成 (n个同样大小的正方体,从这些小正方体中任取一个,求下列事件的概率:(1)三面涂有颜色;(2)恰有两面涂有颜色;
(3)恰有一面涂有颜色;(4)至少有一面涂有颜色.
【矫正反馈】
1、(A)一个三位数的密码锁,每位上的数字都可在0到10这十个数字中任选,某人忘记了密码最后一个号码,开锁时在对好前两位号码后,随意拨动最后一个数字恰好能开锁的概率是 .
2、(A)第1、2、5、7路公共汽车都要停靠的一个车站,有一位乘客等候着1路或5路汽车,假定各路汽车首先到站的可能性相等,那么首先到站的正好是这位乘客所要乘的的车的概率是 .
3、(A)某射击运动员在打靶中,连续射击3次,事件至少有两次中靶的对立事件是 .
4、(B)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%,求抽验一只是正品(甲级)的概率 .
5、(B)袋中装有4只白球和2只黑球,从中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.
【迁移应用】
1、(A)将一粒骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率是 .
2、(A)从鱼塘中打一网鱼,共M条,做上标记后放回池塘中,过了几天,又打上来一网鱼,共N条,其中K条有标记,估计池塘中鱼的条数为 .
3、(A)从分别写有A,B,C,D,E的5张卡片中,任取2张,这两张上的字母恰好按字母顺序相邻的概率是 .
4、(B)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率是 .
5、(B)将甲、乙两粒骰子先后各抛一次,a,b分别表示抛掷甲、乙两粒骰子所出现的点数.
(1)若点P(a,b)落在不等式组 表示的平面区域记为A,求事件A的概率;
(2)求P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.
高三数学复习教案 篇5
考试要求 重难点击 命题展望
1.理解复数的基本概念、复数相等的充要条件.
2.了解复数的代数表示法及其几何意义.
3.会进行复数代数形式的四则运算.了解复数的代数形式的加、减运算及其运算的几何意义.
4.了解从自然数系到复数系的关系及扩充的基本思想,体会理性思维在数系扩充中的作用. 本章重点:1.复数的有关概念;2.复数代数形式的四则运算.
本章难点:运用复数的有关概念解题. 近几年高考对复数的考查无论是试题的难度,还是试题在试卷中所占 比例都是呈下降趋势,常以选择题、填空题形式出现,多为容易题.在复习过程中,应将复数的概念及运算放在首位.
知识网络
15.1 复数的概念及其运算
典例精析
题型一 复数的概念
【例1】 (1)如果复数(m2+i)(1+mi)是实数,则实数m= ;
(2)在复平面内,复数1+ii对应的点位于第 象限;
(3)复数z=3i+1的共轭复数为z= .
【解 析】 (1)(m2+i)(1+mi)=m2-m+(1+m3)i是实数1+m3=0m=-1.
(2)因为1+ii=i(1+i)i2=1-i,所以在复平面内对 应的点为(1,-1),位于第四象限.
(3)因为z=1+3i,所以z=1-3i.
【点拨】 运算此类 题目需注意复数的代数形式z=a+bi(a,bR),并注意复数分为实数、虚数、纯虚数,复数的几何意义,共轭复数等概念.
【变式训练1】(1)如果z=1-ai1+ai为纯虚数,则实数a等于
A.0 B.-1 C.1 D.-1或1
(2)在复平面内,复数z=1-ii(i是虚数单位)对应的点位于
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【解析】(1)设z=xi,x0,则
xi=1-ai1+ai1+ax-(a+x)i=0 或 故选D.
(2)z=1-ii=(1-i)(-i)=-1-i,该复数对应的点位于第三象限.故选C.
题型二 复数的相等
【例2】(1)已知复数z0=3+2i,复数z满足zz0=3z+z0,则复数z= ;
(2)已知m1+i=1-ni, 其中m,n是实数,i是虚数单位,则m+ni= ;
(3)已知关于x的方程x2+(k+2i)x+2+ki=0有实根,则这个实根为 ,实数k的值为.
【解析】(1)设z=x+yi(x,yR),又z0=3+2i,
代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,
整理得 (2y+3)+(2-2x)i=0,
则由复数相等的条件得
解得 所以z=1- .
(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.
则由复数相等的条件得
所以m+ni=2+i.
(3)设x=x0是方程的实根, 代入方程并整理得
由复数相等的充要条件得
解得 或
所以方程的实根为x=2或x= -2,
相应的k值为k=-22或k=22.
【点拨】复数相等须先化为z=a+bi(a,bR)的形式,再由相等 得实部与实部相等、虚部与虚部相等.
【变式训练2】(1)设i是虚数单位,若1+2i1+i=a+bi(a,bR),则a+b的值是
A.-12 B.-2 C.2 D.12
(2)若(a-2i)i=b+i,其中a,bR,i为虚数单位,则a+b=.
【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)= 3+i2,于是a+b=32+12=2.
(2)3.2+ai=b+ia=1,b= 2.
题 型三 复数的运算
【例3】 (1)若复数z=-12+32i, 则1+z+z2+z3++z2 008= ;
(2)设复数z满足z+|z|=2+i,那么z= .
【解析】 (1)由已知得z2=-12-32i,z3=1,z4=-12+32i =z.
所以zn具有周期性,在一个周期内的和为0,且周期为3.
所以1+z+z2+z3++z2 008
=1+z+(z2+z3+z4)++(z2 006+z2 007+z2 008)
=1+z=12+32i.
(2)设z=x+yi(x,yR),则x+yi+x2+y2=2+i,
所以 解得 所以z= +i.
【点拨】 解(1)时要注意x3=1(x-1)(x2+x+1)=0的三个根为1,,-,
其中=-12+32i,-=-12-32i, 则
1++2=0, 1+-+-2=0 ,3=1,-3=1,-=1,2=-,-2=.
解(2)时要注意|z|R,所以须令z=x +yi.
【变式训练3】(1)复数11+i+i2等于
A.1+i2 B.1-i2 C.-12 D.12
(2)(20xx江西鹰潭)已知复数z=23-i1+23i+(21-i)2 010,则复数z等于
A.0 B.2 C.-2i D.2i
【解析】(1 )D.计算容易有11+i+i2=12.
(2)A.
总结提高
复数的代数运算是重点,是每年必考内容之一,复数代数形式的运算:①加减法按合并同类项法则进行;②乘法展开、除法须分母实数化.因此,一些复数问题只需设z=a+bi(a,bR)代入原式后,就 可以将复数问题化归为实数问题来解决.
高三数学复习教案 篇6
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学过程
等比数列性质请同学们类比得出。
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。
2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数
a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。
【示范举例】
例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。
例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。
高三数学复习教案 篇7
排列问题的应用题是学生学习的难点,也是高考的必考内容,笔者在教学中尝试将排列问题归纳为三种类型来解决:
下面就每一种题型结合例题总结其特点和解法,并附以近年的高考原题供读者参研.
一. 能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题)
解决此类问题的关键是特殊元素或特殊位置优先.或使用间接法.
例1.(1)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?
(2)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?
(3)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?
(4)7位同学站成一排,其中甲不能在排头、乙不能站排尾的排法共有多少种?
解析:(1)先考虑甲站在中间有1种方法,再在余下的6个位置排另外6位同学,共 种方法;
(2)先考虑甲、乙站在两端的排法有 种,再在余下的5个位置排另外5位同学的排法有 种,共 种方法;
(3) 先考虑在除两端外的5个位置选2个安排甲、乙有 种,再在余下的5个位置排另外5位同学排法有 种,共 种方法;本题也可考虑特殊位置优先,即两端的排法有 ,中间5个位置有 种,共 种方法;
(4)分两类乙站在排头和乙不站在排头,乙站在排头的排法共有 种,乙不站在排头的排法总数为:先在除甲、乙外的5人中选1人安排在排头的方法有 种,中间5个位置选1个安排乙的方法有 ,再在余下的5个位置排另外5位同学的排法有 ,故共有 种方法;本题也可考虑间接法,总排法为 ,不符合条件的甲在排头和乙站排尾的排法均为 ,但这两种情况均包含了甲在排头和乙站排尾的情况,故共有 种.
例2.某天课表共六节课,要排政治、语文、数学、物理、化学、体育共六门课程,如果第一节不排体育,最后一节不排数学,共有多少种不同的排课方法?
解法1:对特殊元素数学和体育进行分类解决
(1)数学、体育均不排在第一节和第六节,有 种,其他有 种,共有 种;
(2)数学排在第一节、体育排在第六节有一种,其他有 种,共有 种;
(3)数学排在第一节、体育不在第六节有 种,其他有 种,共有 种;
(4)数学不排在第一节、体育排在第六节有 种,其他有 种,共有 种;
所以符合条件的排法共有 种
解法2:对特殊位置第一节和第六节进行分类解决
(1)第一节和第六节均不排数学、体育有 种,其他有 种,共有 种;
(2)第一节排数学、第六节排体育有一种,其他有 种,共有 种;
(3)第一节排数学、第六节不排体育有 种,其他有 种,共有 种;
(4)第一节不排数学、第六节排体育有 种,其他有 种,共有 种;
所以符合条件的排法共有 种.
解法3:本题也可采用间接排除法解决
不考虑任何限制条件共有 种排法,不符合题目要求的排法有:(1)数学排在第六节有 种;(2)体育排在第一节有 种;考虑到这两种情况均包含了数学排在第六节和体育排在第一节的情况 种所以符合条件的排法共有 种
附:1、(20xx北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )
(A) 种 (B) 种 (C) 种 (D) 种
解析:本题在解答时将五个不同的子项目理解为5个位置,五个工程队相当于5个不同的元素,这时问题可归结为能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题),先排甲工程队有 ,其它4个元素在4个位置上的排法为 种,总方案为 种.故选(B).
2、(20xx全国卷Ⅱ)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有 个.
解析:本题在解答时只须考虑个位和千位这两个特殊位置的限制,个位为1、2、3、4中的某一个有4种方法,千位在余下的4个非0数中选择也有4种方法,十位和百位方法数为 种,故方法总数为 种.
3、(20xx福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( )
A.300种 B.240种 C.144种 D.96种
解析:本题在解答时只须考虑巴黎这个特殊位置的要求有4种方法,其他3个城市的排法看作标有这3个城市的3个签在5个位置(5个人)中的排列有 种,故方法总数为 种.故选(B).
上述问题归结为能排不能排排列问题,从特殊元素和特殊位置入手解决,抓住了问题的本质,使问题清晰明了,解决起来顺畅自然.
二.相邻不相邻排列问题(即某两或某些元素不能相邻的排列问题)
相邻排列问题一般采用大元素法,即将相邻的元素捆绑作为一个元素,再与其他元素进行排列,解答时注意释放大元素,也叫捆绑法.不相邻排列问题(即某两或某些元素不能相邻的排列问题)一般采用插空法.
例3. 7位同学站成一排,
(1)甲、乙和丙三同学必须相邻的排法共有多少种?
(2)甲、乙和丙三名同学都不能相邻的排法共有多少种?
(3)甲、乙两同学间恰好间隔2人的排法共有多少种?
解析:(1)第一步、将甲、乙和丙三人捆绑成一个大元素与另外4人的排列为 种,
第二步、释放大元素,即甲、乙和丙在捆绑成的大元素内的排法有 种,所以共 种;
(2)第一步、先排除甲、乙和丙之外4人共 种方法,第二步、甲、乙和丙三人排在4人排好后产生的5个空挡中的任何3个都符合要求,排法有 种,所以共有 种;(3)先排甲、乙,有 种排法,甲、乙两人中间插入的2人是从其余5人中选,有 种排法,将已经排好的4人当作一个大元素作为新人参加下一轮4人组的排列,有 种排法,所以总的排法共有 种.
附:1、(20xx辽宁卷)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有 个.(用数字作答)
解析:第一步、将1和2捆绑成一个大元素,3和4捆绑成一个大元素,5和6捆绑成一个大元素,第二步、排列这三个大元素,第三步、在这三个大元素排好后产生的4个空挡中的任何2个排列7和8,第四步、释放每个大元素(即大元素内的每个小元素在捆绑成的大元素内部排列),所以共有 个数.
2、 (20xx. 重庆理)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,
二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰
好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ( )
A. B. C. D.
解析:符合要求的基本事件(排法)共有:第一步、将一班的3位同学捆绑成一个大元素,第二步、这个大元素与其它班的5位同学共6个元素的全排列,第三步、在这个大元素与其它班的5位同学共6个元素的全排列排好后产生的7个空挡中排列二班的2位同学,第四步、释放一班的3位同学捆绑成的大元素,所以共有 个;而基本事件总数为 个,所以符合条件的概率为 .故选( B ).
3、(20xx京春理)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )
A.42 B.30 C.20 D.12
解析:分两类:增加的两个新节目不相邻和相邻,两个新节目不相邻采用插空法,在5个节目产生的6个空挡排列共有 种,将两个新节目捆绑作为一个元素叉入5个节目产生的6个空挡中的一个位置,再释放两个新节目 捆绑成的大元素,共有 种,再将两类方法数相加得42种方法.故选( A ).
三.机会均等排列问题(即某两或某些元素按特定的方式或顺序排列的排列问题)
解决机会均等排列问题通常是先对所有元素进行全排列,再借助等可能转化,即乘以符合要求的某两(或某些)元素按特定的方式或顺序排列的排法占它们(某两(或某些)元素)全排列的比例,称为等机率法或将特定顺序的排列问题理解为组合问题加以解决.
例4、 7位同学站成一排.
(1)甲必须站在乙的左边?
(2)甲、乙和丙三个同学由左到右排列?
解析:(1)7位同学站成一排总的排法共 种,包括甲、乙在内的7位同学排队只有甲站在乙的左边和甲站在乙的右边两类,它们的机会是均等的,故满足要求的排法为 ,本题也可将特定顺序的排列问题理解为组合问题加以解决,即先在7个位置中选出2个位置安排甲、乙, 由于甲在乙的左边共有 种,再将其余5人在余下的5个位置排列有 种,得排法数为 种;
(2)参见(1)的分析得 (或 ).
高三数学复习教案 篇8
【高考要求】:简单复合函数的导数(B).
【学习目标】:1.了解复合函数的概念,理解复合函数的求导法则,能求简单的复合函数(仅限于形如f(ax+b))的导数.
2.会用复合函数的导数研究函数图像或曲线的特征.
3.会用复合函数的导数研究函数的单调性、极值、最值.
【知识复习与自学质疑】
1.复合函数的求导法则是什么?
2.(1)若 ,则 ________.(2)若 ,则 _____.(3)若 ,则 ___________.(4)若 ,则 ___________.
3.函数 在区间_____________________________上是增函数, 在区间__________________________上是减函数.
4.函数 的单调性是_________________________________________.
5.函数 的极大值是___________.
6.函数 的值,最小值分别是______,_________.
【例题精讲】
1. 求下列函数的导数(1) ;(2) .
2.已知曲线 在点 处的切线与曲线 在点 处的切线相同,求 的值.
【矫正反馈】
1.与曲线 在点 处的切线垂直的一条直线是___________________.
2.函数 的极大值点是_______,极小值点是__________.
(不好解)3.设曲线 在点 处的切线斜率为 ,若 ,则函数 的周期是 ____________.
4.已知曲线 在点 处的切线与曲线 在点 处的切线互相垂直, 为原点,且 ,则 的面积为______________.
5.曲线 上的点到直线 的最短距离是___________.
【迁移应用】
1.设 , , 若存在 ,使得 ,求 的取值范围.
2.已知 , ,若对任意 都有 ,试求 的取值范围.
高三数学复习教案 篇9
一、教学内容分析
二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念.掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义.
二、教学目标设计
理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题.
三、教学重点及难点
二面角的平面角的概念的形成以及二面角的平面角的作法.
四、教学流程设计
五、教学过程设计
一、 新课引入
1.复习和回顾平面角的有关知识.
平面中的角
定义 从一个顶点出发的两条射线所组成的图形,叫做角
图形
结构 射线—点—射线
表示法 ∠AOB,∠O等
2.复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征.(空间角转化为平面角)
3.观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角.在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关.)从而,引出“二面角”的定义及相关内容.
二、学习新课
(一)二面角的定义
平面中的角 二面角
定义 从一个顶点出发的两条射线所组成的图形,叫做角 课本P17
图形
结构 射线—点—射线 半平面—直线—半平面
表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β
(二)二面角的图示
1.画出直立式、平卧式二面角各一个,并分别给予表示.
2.在正方体中认识二面角.
(三)二面角的平面角
平面几何中的“角”可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大小可以度量,类似地,"二面角"也可以看作是一个半平面以其棱为轴旋转而成,它也有一个旋转量,那么,二面角的大小应该怎样度量?
1.二面角的平面角的定义(课本P17).
2.∠AOB的大小与点O在棱上的位置无关.
[说明]①平面与平面的位置关系,只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,有必要来研究二面角的度量问题.
②与两条异面直线所成的角、直线和平面所成的角做类比,用“平面角”去度量.
③二面角的平面角的三个主要特征:角的顶点在棱上;角的两边分别在两个半平面内;角的两边分别与棱垂直.
3.二面角的平面角的范围:
(四)例题分析
例1 一张边长为a的正三角形纸片ABC,以它的高AD为折痕,将其折成一个 的二面角,求此时B、C两点间的距离.
[说明] ①检查学生对二面角的平面角的定义的掌握情况.
②翻折前后应注意哪些量的位置和数量发生了变化, 哪些没变?
例2 如图,已知边长为a的等边三角形 所在平面外有一点P,使PA=PB=PC=a,求二面角 的大小.
[说明] ①求二面角的步骤:作—证—算—答.
②引导学生掌握解题可操作性的通法(定义法和线面垂直法).
例3 已知正方体 ,求二面角 的大小.(课本P18例1)
[说明] 使学生进一步熟悉作二面角的平面角的方法.
(五)问题拓展
例4 如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是 ,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是 ,沿这条路上山,行走100米后升高多少米?
[说明]使学生明白数学既来源于实际又服务于实际.
三、巩固练习
1.在棱长为1的正方体 中,求二面角 的大小.
2. 若二面角 的大小为 ,P在平面 上,点P到 的距离为h,求点P到棱l的距离.
四、课堂小结
1.二面角的定义
2.二面角的平面角的定义及其范围
3.二面角的平面角的常用作图方法
4.求二面角的大小(作—证—算—答)
五、作业布置
1.课本P18练习14.4(1)
2.在 二面角的一个面内有一个点,它到另一个面的距离是10,求它到棱的距离.
3.把边长为a的正方形ABCD以BD为轴折叠,使二面角A-BD-C成 的二面角,求A、C两点的距离.
六、教学设计说明
本节课的设计不是简单地将概念直接传受给学生,而是考虑到知识的形成过程,设法从学生的数学现实出发,调动学生积极参与探索、发现、问题解决全过程.“二面角”及“二面角的平面角”这两大概念的引出均运用了类比的手段和方法.教学过程中通过教师的层层铺垫,学生的主动探究,使学生经历概念的形成、发展和应用过程,有意识地加强了知识形成过程的教学.
高三数学复习教案 篇10
【考纲要求】
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
【自学质疑】
1.双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 ,
渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。
2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3.经过两点 的双曲线的标准方程是 。
4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。
5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为
【例题精讲】
1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。
3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。
【矫正巩固】
1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。
2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。
3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是
4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。
【迁移应用】
1. 已知双曲线 的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率
2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。
3. 双曲线 的焦距为
4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则
5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .
6. 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为
高三数学复习教案 篇11
一、 知识梳理
1.三种抽样方法的联系与区别:
类别 共同点 不同点 相互联系 适用范围
简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少
系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多
分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异
(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为
(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.
(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.
(4) 要懂得从图表中提取有用信息
如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值
2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差
3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=
特别提醒:古典概型的两个共同特点:
○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;
○2 ,即每个基本事件出现的可能性相等。
4. 几何概型的概率公式: P(A)=
特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。
二、夯实基础
(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.
(2)某赛季,甲、乙两名篮球运动员都参加了
11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,
则甲、乙两名运动员得分的中位数分别为( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)统计某校1000名学生的数学会考成绩,
得到样本频率分布直方图如右图示,规定不低于60分为
及格,不低于80分为优秀,则及格人数是 ;
优秀率为 。
(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一个分和一个最低分后,所剩数据的平均值
和方差分别为( )
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.
(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )
三、高考链接
07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒
; 第六组,成绩大于等于18秒且小于等于19秒.右图
是按上述分组方法得到的频率分布直方图.设成绩小于17秒
的学生人数占全班总人数的百分比为 ,成绩大于等于15秒
且小于17秒的学生人数为 ,则从频率分布直方图中可分析
出 和 分别为( )
08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )
分数 5 4 3 2 1
人数 20 10 30 30 10
09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).
08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率.