小学六年级上册数学教案优秀 篇1
教学内容
化简比。(教材第50~51页例1)
教学目标
1、能运用比的`基本性质化简比。
2、理解求比值和化简比的区别。
3、理解知识间的内在联系,渗透类比思想。
重点难点
重点:掌握化简比的方法。
难点:理解化简比与求比值的区别。
教学过程
一、复习引入
1、把下面的分数化为最简分数。(课件出示题目)
4/8 6/30 12/18 14/56
点名学生回答,并说一说什么是最简分数。
2、六二班共有学生50人,今天出勤人数为46,总人数与出勤人数的比是多少?(课件出示题目,点名学生回答)
3、师:比的基本性质是什么?
4、引出新课。
师:为了使数量间的关系更明确,我们经常要应用比的基本性质,把比化成最简单的整数比。这就是这节课我们要一起学习的内容。
二、学习新课
1、认识最简单的整数比。
师:谁知道什么样的比可以称作最简单的整数比?
引导学生联系最简分数的概念,讨论什么叫做最简单的整数比。
教师根据学生的回答进行归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。
指名学生举出几个最简单的整数比。
小学六年级上册数学教案优秀 篇2
教学目标
1. 使学生在具体的情境中认识列、行的含义,知道确定列、行的规则。能初步理解数对的含义,会用数对表示具体情境中物体的位置。
2. 结合具体情境,使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高思维能力,发展空间观念。
3. 使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
教学过程
一、 情境引入,激发需要
提问: 能说出我们班中队长坐在哪里吗?
出示例1主题图,让学生按自己的想法描述小军的位置。(学生可能认为小军坐在第4组第3个,也可能认为小军坐在第3排第4个)
质疑:同样都是表示小军的位置,怎么会有两种不同的表达方式呢?(第一种意见是把一竖排看作一个小组,小军就在第4组第3个;第二种意见是把一横排看作一排,小军就在第3排第4个)
提问:怎样才能用一致的方式,更简明地说出小军的位置呢?(学生可能想到:先说清楚是什么排或什么是组,再说明小军在第几组第几个或第几排第几个;统一规定,横着的是排,大家都按照这样的规定去说)
提问:你认为哪一种方法更好些?(学生中可能会出现两种不同的意见,注意引导学生体会:如果有一个约定,大家都按照这样的规则去做,就不会表达不清了)
揭示课题:怎样规定横排和竖排呢?这节课我们就来学习一种既准确又简洁的确定位置的方法。(板书课题)
[说明:让学生说出中队长的位置,有效地唤起了学生已有的用“第几组第几个”或“第几排第几个”的知识确定位置的经验,帮助学生找准了新旧知识的连接点。让学生运用已有经验描述小军的座位,使学生体会到用已有的经验描述小军的位置,由于标准不同,结果也不同,从而引起学习和探索新方法的内在需要,有效地激发了学生学习的积极性。]
二、 认识列、行,理解数对
1. 对照座位示意图认识列与行。
讲解:(出示教材第15页的座位示意图)习惯上,我们把竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。用这样的方法来描述,小军就坐在第4列第3行的位置上。(板书:第4列第3行)
提问:(在示意图的第2列第4行的位置上,点出小明)小明坐在这个位置,他的位置是在第几列第几行?(板书:第2列第4行)
提问:小丽坐在第5列第2行,你能在图中找出小丽的位置吗?(学生指出小丽的位置,并板书:第5列第2行)
自己在图中找一个点,并用第几列第几行的方式描述这个点的位置,和小组内的同学交流。
反馈:会用第几列第几行这样的方式来确定物体的位置了吗?(要求学生举例说明)
2. 用数对表示物体的位置。
谈话:我们已经认识了列和行,并且能用第几列第几行来确定物体所在的位置。既然大家约定用第几列第几行的方式来表达物体的位置,就不会引起误解。那能不能用一种更简洁的方法来表达呢?(学生可能会想用字母分别表示列和行)
讲解:大家想出的办法很好。其实,我们可以进一步规定:用一个数表示第几列,再用另一个数表示第几行,那么,小军的位置就用两个数来表示就够了。你能知道是哪两个数吗?(4和3)习惯上,我们用一个数对来表示:(4,3)。
提问:数对前面的.一个数4表示什么?3呢?
提问:你能用数对分别表示小明和小丽的位置吗?(学生用数对表示,并说明每一个数对的含义)
要求学生同桌合作,一人指出位置,另一人说说这个位置是第几列第几行,并且用数对表示出来。
3. 完成教材第15页的“练一练”。
(1) 在图中找出第2列第4行的位置,找到后,在图中用笔涂出来,并用数对表示,填在书上的括号里。
(2) (6,5)这个数对在图中表示的是第几列第几行的位置?
[说明:先通过具体的情境,让学生认识列、行的含义与确定列、行的规则,再通过确定小明、小丽的位置帮助学生熟悉这一规则,为数对的引入奠定了厚实的基础。从列和行的规定,到用数对来表示,既有利于学生理解数对的含义,又渗透了符号化的思想,有利于学生感受数学符号的简洁性,体会数学的应用价值。之后,让学生尝试运用数对描述其他事物的位置,加深了对数对含义的理解。整个环节的设计,层次鲜明,重点突出,符合学生的认知规律,提高了学生的学习效率。]
三、 巩固练习,发展智慧
1. 完成练习三第1题。
出示教室座位图,并标出每一个学生的名字。
(1) 说一说: 要求学生用数对表示自己或同学的位置,并组织交流。
(2) 比一比:同桌合作,在图上指出某个同学的位置,让同桌尽快用数对表示出这个同学的位置。比比谁的反应快。
(3) 猜一猜:用数对表示出自己好朋友所在的位置,其他同学猜出这个同学是谁。
2. 完成练习三第2题。
出示题目。
(1) 生活中也经常用数对确定位置。请看,小明家厨房的一面墙上贴着瓷砖,请用数对表示四块装饰瓷砖的位置。
学生完成后,全班交流。
(2) 讨论:你发现表示这四块瓷砖位置的数对有什么特点吗?(前一个数相同,说明两块瓷砖在同一列;后一个数相同,说明两块瓷砖在同一行)
3. 课件出示练习三第3题。
出示题目。
(1) 说位置:这是学校会议室的地面图,同座位的同学相互说说每块花色地砖的位置。(用第几列第几行表示)
(2) 写数对:能用数对表示出这几块花色地砖的位置吗?(学生完成后,组织交流)
(3) 找规律:观察这几块花色地砖的位置,你发现了什么?
先让学生在小组中说说自己的发现,再组织全班交流。
4. 拓展应用。
出示右图。
谈话:如图,“光”字的位置可以用(C,2)来表示。说出下面类似于数对的每组字母和数各表示什么汉字,并连起来读一读:(B,3)、(A,5)、(C,4)、(E,2)、(D,1)。
学生在小组中交流,然后全班交流,并齐读: “我们爱数学”。
提问:你爱数学吗?为什么?
[说明:通过多种形式的练习,既激发了学生学习的兴趣,又提高了学生的能力。首先结合学生在教室中的位置,通过说一说、比一比、猜一猜等活动,使学生进一步巩固了对列、行和数对含义的认识。然后让学生结合生活实际用数对来确定墙面瓷砖和地面花色地砖的位置,这里注意通过比较瓷砖和地砖的位置特征,在观察、比较的基础上让学生充分交流,使学生发现数对中的一些规律,如同一列中,数对中的前一个数相同;同一行中,数对中的后一个数相同等,提升了学生的认识。最后通过类似于数对的一组字母和数找相应的汉字——“我们爱数学”,进一步加深学生对数对的理解,提高运用所学的知识解决实际问题的能力,更能激发学生学习数学的热情。]
四、 自主总结,生成问题
提问:这节课我们学习了什么?你有什么收获?还有什么问题值得我们课后去探究?
出示“神舟六号”飞船返回地球的画面。
谈话:“神舟六号”之所以能顺利地返回,也要用到我们今天学习到的知识。地球这么大,怎样在地球上确定位置呢?请同学们课后去查阅有关资料,并和其他同学交流。
[说明:一节课的结束,不应该是学生探索活动的终止。让学生带着问号离开教室这个小课堂,走进探索的大课堂。教学中,通过对“神舟六号”返回地球画面的回放,引发学生思考:地球这么大,怎样在地球上确定位置呢?这样做既为下节课进一步用数对确定位置打下伏笔,又有效地激发了学生的问题意识和自主探究的意识。]
小学六年级上册数学教案优秀 篇3
教学内容:
课本P19页和练习五。
教学目的:
1、使学生理解倒数的意义。掌握求一个数的倒数的方法。
2、渗透事物都是普遍联系观点的启蒙教育。
教学重点:
理解倒数的意义和怎样求倒数。
教学难点:
求倒数方法的叙述。
教学过程:
一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。
二、自学新课:自学书本P19。
并思考以下问题:
1)什么叫倒数?
2)怎么求一个数的倒数?
3)是不是任何数都有倒数?小数有吗?带分数有吗?
三、讨论辨析:
1、什么叫倒数?
2、看下面四道题,你能说一些什么有关“倒数”的话。
3、存在倒数有那些条件
1)两个数。
2)这两个数的乘积是1。
4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?
5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
6、总结求一个数的倒数的方法。
四、练习
1、判断下列各组数是否互为倒数,为什么?
2、同座同学相互举出几组倒数。你怎么知道同学说的对不对?
1)5的`倒数是多少?
2)所有的自然数都有倒数吗?1的倒数是几?
3)0有没有倒数?为什么?
4)怎样求一个数的倒数?
3、完成课本P19页的“做一做” 。
4、辨析:求3/5的倒数,写作:3/5=5/3。
五、思考:0.2的倒数是多少?
六、小结。
请学生说一说这节课学习了哪些内容。
七、作业:练习五3—8。
小学六年级上册数学教案优秀 篇4
学习内容
教科书第55页例2,课堂活动第2题,练习十五第4~7题。
育人目标
1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。
2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。
3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。
4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。
5.在按比例分配的过程中,感受分配方案的简洁美、理性美。
6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。
学习重难点
重点:把两个数比的问题的解题方法推广到三个数连比的问题。
难点:理解三个数连比的问题的解题方法。
学习评价设计
学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。
教学过程
导入新课
1.填空。(多媒体出示题目)
(1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。
(2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。
学生回答反馈,说说怎样思考,集体评价。
2.引入谈话:怎样解决按比例分配的问题?
在实际生活中还有哪些问题可以用按比例分配的方法解决?生举例。(组织学生分组讨论。
反馈。
交流后,老师及时做出评价)
在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。
独立思考再交流方法和结果,集体评价。
举例,分组讨论、反馈、交流。
探究新知
1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)
要配制220吨混凝土,水泥、沙子、石子的比是:2∶3∶6,需要水泥、沙子、石子各多少吨?
2.教师组织学生讨论:这道题与前面所做的题有什么区别?怎样解答?
生1:前面所做的题都是两个量的比,这道题是三个量的比。
生2:可以仿照上节所学的按比例分配方法去解。
3.学生尝试解答,教师巡视。
4.展示学生解法,说出解题思路。
方法1:220÷(2+3+6)=20(吨)
需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)
答:需要水泥40吨,需要沙子60吨,需要石子120吨。
方法2:总份数:2+3+6=11
需要水泥的吨数:220x2/11=40(吨)
需要沙子的吨数:220x3/11=60(吨)
需要石子的吨数:220×6/11=120(吨)
方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。
解:设每份是x吨。
2x+3x+6x=220
11x=220
x=20
需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)
5.议一议:怎样解决按比例分配的问题?
学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的'一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。
学生交流获取的信息。
讨论交流异同。
尝试解答,再展示交流解题思路。
独立思考,再小组交流、小结解决按比例分配问题的一般方法。
在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。
在按比例分配的过程中,感受分配方案的简洁美、理性美。
巩固练习
1.课堂活动第2题。
根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。
2.一堆混凝土中沙子有100kg,石子有60kg,水泥有240kg。要配制180吨这样的混凝土,需要沙子、石子、水泥各多少吨?
教师组织学生讨论:这道题与前面所做的题有什么区别?
引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。
学生讨论后尝试独立解题。完成后交流解决问题的方法。
刚才同学们通过上题计算,知道混凝土中沙子、石子、水泥的比为5∶3∶12。现有一堆总重为40吨的混凝土,经现场测量,水泥有20吨,沙子有12吨,石子有8吨。这堆混凝土符合配比吗?
再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。
学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。
学生讨论找到方法。
独立解题,再交流解题方法。
讨论交流得出结论。
经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。
课堂小结
想一想,今天学习的知识与昨天有什么不同?又有什么相同?
谈收获。
课堂作业
练习十五第4—7题。
独立完成。
小学六年级上册数学教案优秀 篇5
教材分析:
在学习了比例这个单元的知识后,教材安排了一节整理复习的内容,对本单元的知识进行整理和复习。学生通过学习对比例的意义、正反比例关系、以及用比例知识解决问题的方法都有了一定的认识和理解,经过一段时间的学习,有必要对这些知识进行系统的整理和复习。教师在组织整理复习时,要紧紧围绕着本单元教学的基本要求,结合学生学习的具体情况有针对性地进行复习。对学生平时学习过程中容易出错的、易混淆的概念,要加强对比复习,使学生明确它们的区别,加深对概念的理解。
教学目标:
1.通过复习,进一步理解比例的意义和基本性质,明确比和比例的联系与区别,能正确熟练地解比例。
2.通过复习,进一步理解正比例和反比例的意义,能正确进行判断。
3.通过复习,熟练掌握应用比例知识解决问题的方法。
4.在复习过程中,培养学生的整理复习意识,体会整理复习的好处,逐步掌握用思维导图整理知识的方法。
教学重点:理解并掌握比例的意义和基本性质、正比例和反比例的意义;
掌握应用比例知识解决问题的方法。
教学难点:通过整理和复习,对比例知识有系统的认识,形成系统的知识体系。
教法:教师用思维导图的方法指导学生整理和复习。
学法:学生回忆整理,练习巩固知识。
设计说明:
根据我们的《小学六年级数学复习课教学的有效性研究》课题,结合学生已有的知识经验设计教案。有两个要达成的目标,一是老师带着学生边复习便边整理知识,在对知识之间的联系有初步认识的基础上,初步形成知识网络。二是通过收集错题,典型题,对本单元的重点,难点、易错点的复习,让学生对知识有一个比较完整的把握。从学法层面来说,向学生展示一种好的复习方法——用思维导图对本单元进行整理和复习,旨在让学生通过该节课的学习,掌握用思维导图进行整理和复习的方法。
教学过程:
一、谈话引入,揭示课题
1.比例这个单元我们主要学习了什么内容?【比例的意义和基本性质、正比例和反比例、比例的应用等】
2.学习的内容那么多,你是如何整理和复习的?有什么好方法与大家分享?
3.今天这节课,我们就一起用思维导图对这个单元的知识进行整理和复习。
揭示课题:比例的整理和复习
二、看书归纳整理
1、看书整理比例的意义
(1)师指导学生看书(第40至42页),边复习边整理。
老师带着学生看书整理和复习比例的意义。
(2)复习比例的意义、各部分名称、比和比例的区别。
说一说:什么是比?什么是比例?比和比例有什么联系和区别?
比:两个数相除又叫做这两个数的比
比例:表示两个比相等的式子叫做比例。
2、看书整理复习正比例和反比例
(1)让学生看书第45至49页,尝试整理本节知识。
3、整理比例的应用让学生看书第53至62页,尝试整理本节知识,老师个别辅导。
4、汇报分享交流整理的成果。
注意事项:
1、将一个图形按一定的比放大和缩小时要注意什么?教师强调:图形的放大和缩小都是把图形的边长按一定比例进行放大和缩小。
2、用比例知识解决问题有哪些步骤?
三、巩固练习
1、下面各表中相对应的两个量的比能否组成比例?如果能,把组成的比例写出来。
2、判断两种相关联的量是否成比例?成什么比例?说明理由。
(1)总路程一定,速度和时间。
(2)总页数一定,看了的页数和剩下的页数。
(3)购买铅笔的单价一定,总价和数量。
小学六年级上册数学教案优秀 篇6
教学内容:
课本第14~15页的例1,完成“做一做”和练习四的第1~5题。
教学目的:
1、使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、培养学生分析能力,发展学生思维。
教学重点:
理解题中的单位“1”和问题的关系。
教学难点:
抓住知识关键,正确、灵活判断单位“1”。
教学过程:
一、复习
1、列式计算。
(1)20的是多少?
(2)6的是多少?
二、新授。
1、教学例1。
出示例1:学校买来100千克白菜,吃了,吃了多少千克?
(1)指名读题,说出条件和问题。
(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。
先画一条线段,表示“100千克白菜”。
吃了,吃了谁的?(100千克白菜)要把“100千克白菜”平均分成5份,吃了4份,怎样表示?
教师边说边画出下图:
(3)分析数量关系,启发解题思路。
A请同学们仔细观察图画,并认真想一想,吃了,是吃了哪个数量的?
B分组讨论交流:依据吃了100千克的把哪个量看作单位“1”呢?为什么?你是怎样想的?
(4)列式计算。
A学生完整叙述解题思路。
B学生列式计算,教师板书:(千克)
C写出答话,教师板书:答:吃了80千克。
(5)总结思路。
根据以上分析,让学生讨论一下解题顺序:吃了?吃了谁的`?谁是多少(已知)?谁的是多少乘法。
(6)反馈练习。(14页)1—3题,做完后订正。说一说你是怎样想的?
2、阅读课本:把书中的想的过程和线段图认真看一下,不懂提问。
(三、全课小结:
四、随堂练习。
1、判断下面每组中的两个量,应该把谁看作单位“1”。
(1)乙是甲的,甲是乙的。
(2)甲是乙的,乙是甲的倍。
2、练习四1、2题,完成在练习本上,然后订正。
3、操作:画出“体育小组的人数是美术小组的倍”的线段图自己补充条件和问题并解答。
五、作业
练习四3、4题。
小学六年级上册数学教案优秀 篇7
教学内容:
课本第9页例4及“做一做”,练习四1—5题。
教学目标:
(1)使学生掌握分数乘加、乘减混合运算。
(2)使学生能够熟练地计算分数乘加、乘减混合运算。
教学重点:
分数乘加、乘减混合运算的运算顺序。
教学难点:
混合运算的步骤。
教学过程:
(一)铺垫孕伏。
1、出示复习题。(投影片)
(1)说出下面各题的运算顺序。
5×6+7×3 15×(34—27)16×4—7×9
(35+21)×28 70—4×6 36×2+15
2、引出课题:
刚才复习的整数乘加、乘减混合的运算顺序,这节课我们学习分数乘加、乘减混合运算。(板书课题:分数乘加与乘减混合运算)
(二)探究新知。
1、学习例4。
(1)教师点拨:分数加法、减法、乘法混合在一起的时候,怎样计算呢?运算顺序跟整数运算顺序相同。
出示例4:计算,指名读题。
(2)学生按整数运算的顺序计算。(教师巡视)
(3)订正:
指名学生问:这题先算什么?再算什么?说一说计算过程,教师随学生回答板书:
教师明确:这道题有乘有加,同学们做得很好,如果一道题有乘有减,或者有乘有加还有小括号,这样的题怎么计算?(出示做一做两道题)
2、做一做:
(1)试做:
让学生独立完成在练习本上。(指名两名学生做在小黑板上)
提示:注意计算时只写必要的计算过程。(教师巡视)
(2)订正:
让学生先说先算什么,再算什么。根据学生已有经验,启发学生思考、交流主动学会新知。
(三)全课小结:
这节课我们自己学会了分数乘加、乘减混合运算。大家学习得很好。我们要注意在混合运算中计算步骤还要过于繁琐。还要养成做题认真仔细的好习惯。
(四)巩固练习:
1、练习四第1题。让学生做在练习本上,指几名学生分别写在小黑板上。
2、练习四第3、4、5题。
(五)作业。
练习四第2题。
小学六年级上册数学教案优秀 篇8
教学内容:
一个数乘以分数及其应用题。
教学目的:
在学生初步理解一个数乘以分数的意义的基础上,通过类比的推理方法,形成一个数乘以分数就是求这个数的几分之几是多少的概念。并掌握一个数的几分之几是多少,就是用这个数乘以分数的计算方法。
教学过程:
一、只列式不计算
1)两地相距4千米,小明行了4/5千米,还剩多少千米?
2)大豆每千克含油4/25千克,照这样计算,20千克大豆含油多少千克?
二、发展练习
(1)六(5)班有45位学生,其中男生占3/5,男生有多少人?
(2)商店有18辆儿童单车,上午卖出了4/9,上午卖出了多少辆?
(3)重量是足球的49,一个足球重1/4千克,一个排球重几千克?
(4)每小时骑车行11千米,这4小时一共行多少千米?
2、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的1/4,第二次用去多少吨?
3、食堂运来24吨的煤,第一次用去1/3,第二次用去的这批煤的1/4,第二次用去多少吨?
4、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?
三、作业:
练习四第11—15题。
小学六年级上册数学教案优秀 篇9
教学目标:
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学难点:
分析题中的数量关系。
教具准备:
多媒体课件
教学过程:
一、旧知铺垫(课件出示)
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新知探究
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:
买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。
解:设买来大米X千克。
x-x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的
(3)学生试画出线段图。
(4)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(5)根据等量关系式解答问题。
(6)解:设航模小组有χ人。
χ+χ=25
(1+)χ=25
χ=25÷
χ=20
答:航模小组有20人。
三、课堂小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、当堂测评
练习十第4、12、14题。
学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。
小学六年级上册数学教案优秀 篇10
分数乘整数
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则
教具准备:多媒体课件、
教学过程:
一、复习引入
1.课件出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少? 9个11是多少? 8个6是多少?
(2)计算:
+ + = + + =
2.引出课题。
+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。
二:新知探究
1.出示课题明确学习目标。
2.课件出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
3、 课件出示例1
教师引导学生画出线段图。
学生根据线段图列出不同的算式,并解答。
(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的
”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?
2/11 + 2/11 + 2/11 =
2/11 × 3 =
(3).分数乘以整数的法则。
A.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)
B.归纳法则。
通过以上计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。
小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
C.应用法则计算。
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
4、 教学例2
(1)出示 ×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
三、当堂测评(课件出示)
1.看图写算式
2.先说算式意义,再填空。
3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
四、学生课堂自评
1、这节课你有什么收获?
2、每个学生给自己在课堂上的表现进行评价。
板书设计
分数乘以整数
意义:求几个相同加数 和的简便运算。
法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
2/11 ×3
= 2×3/11
= 6/11
小学六年级上册数学教案优秀 篇11
教材简析:这部分教材主要是通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。
教学目标:
1、让学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。
2、让学生应用发现的规律解决一些简单实际问题。
3、养学生的合作能力、空间想象能力和思维能力。
教学重点与难点:通过操作,比较拼成的长方体的表面积与原来两个正方体的表面积的和究竟发生了什么,发现规律,学会分析。
教学准备:
1、 课前把全班同学合理分组,并明确分工,强调合作。
2、 以小组为单位,每小组准备8个1立方厘米的正方体,2个完全相同的长方体,以及10盒同样的火柴盒。
教学过程:
一、拼拼算算
1、 教师演示:把两个体积是1立方厘米拼成一个长方体。
提问:体积有没有变化?
学生观察、交流、讨论(可以计算、可以用肉眼观察)鼓励方法的多样性。
小结:把2个体积是1立方厘米的正方体拼成一个长方体,体积没有发生变化。
追问:把3个体积是1立方厘米的正方体拼成一个长方体,体积有没有发生变化?
再次小结:同样大小的正方体拼成一个长方体,体积不发生变化。
2、课件再次演示:把两个体积是1立方厘米拼成一个长方体。
提问:表面积有没有发生?
让学生通过拼一拼,计算或观察的方法来发现,在小组讨论,再集体交流。
组织交流:A两个同样大小的正方体拼成长方体,表面积发生变化了吗?
B拼成长方体后表面积是增加了还是减少了?
C那么具体减少的是哪几个面的面积呢?(请学生指指摸摸)明确表面积减少了原来2个正方形面的面积,即减少了2平方厘米。
3、深入探究:
课件演示操作要求:
(1)、如果用3个、4个正方体拼成长方体,表面积又发生了什么变化呢?(排法要求是排成一排)
(学生自己猜想、操作、探究、验证)
提醒学生把相关数据及时填在表中。并交流填写结果。
(2)、当正方体增加到5个6个时,表面积会怎么变化呢?
学生先猜想,再通过拼一拼来验证。
(3)、发现规律:你能联系操作和填表的过程提出自己发现的规律吗?
给予充分时间让学生讨论。
交流(可以有多种表述,只要符合题意即可)
“从最简单的体积变了,表面积变了,或每一种具体拼法减少了哪两个面的面积都是可以的。”
4、小组动手操作,用老师给你们准备的2个相同长方体拼成三个不同的大长方体,你有什么发现?
(1)、学生操作探究讨论。
交流:“体积没有变,表面积变了。”“都比原来减少了2个面的面积,但不同的拼法减少的面积就不同。(交流时课件演示三种不同的拼法)
(2)、你能看出哪个大长方体的表面积,哪个最小吗?(学生交流讨论)
(3)、怎么验证你的发现呢?(引导学生通过计算验证自己的发现)
小结:不管怎样拼,每次都会减少两个长方形面的面积;而减少的面积越少,拼成的大长方体的表面积就越大。
二、拼拼说说
1、课件演示:用6个体积是1立方厘米的正方体可以拼成不同的长方体
问:哪个长方体的表面积?大多少?
学生观察,并动手拼一拼,再体积讨论交流,交流时请学生说说你是怎么想的。
(教师应侧重引导学生应用前面发现的规律,并通过对拼成的每个长方体的具体分析得出。)
2、拼10包火柴盒,包成一包有几种包法?怎样包装最节省包装纸。
学生分组操作讨论交流。
教师引导学生具体分析每一种包装方法,并适当说明理由。
“怎样包装最省纸”就是什么最少?(拼成的长方体的表面积最小)
怎样拼最少呢?(5盒叠一起,并排两叠)
三、全课小结
通过这节实践活动课,你知道了什么?