有理数的乘法数学教案

2023-09-02

有理数的乘法数学教案 篇1

  一、知识与技能

  (1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。

  (2)能利用计算器进行有理数的乘法运算。

  二、过程与方法

  经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。

  三、情感态度与价值观

  培养学生主动探索,积极思考的学习兴趣。

  教学重、难点与关键

  1.重点:能用法则进行多个因数的乘积运算。

  2.难点:积的符号的确定。

  3.关键:让学生观察实例,发现规律。

  教具准备

  投影仪。

  四、 教学过程

  1.请叙述有理数的乘法法则。

  2.计算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。

    五、新授

  1.多个有理数相乘,可以把它们按顺序依次相乘。

  例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;

  又如:(+2)[(-78)]=(+2)(-26)=-52.

  我们知道计算有理数的'乘法,关键是确定积的符号。

  观察:下列各式的积是正的还是负的?

  (1)234 (2)234(-4)

  (3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。

  易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。

  教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

  学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。

  2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。

有理数的乘法数学教案 篇2

  一、知识与技能

  经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。

  二、过程与方法

  经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。

  三、情感态度与价值观

  培养学生积极探索精神,感受数学与实际生活的联系。

  教学重、难点与关键

  1.重点:应用法则正确地进行有理数乘法运算。

  2.难点:两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆。

  3.关键:积的符号的确定。

  教具准备

  投影仪。

  四、教学过程

    一、引入新课

  在小学,我们学习了正有理数有零的'乘法运算,引入负数后,怎样进行有理数的乘法运算呢?

    五、新授

  课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O。

  (1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

  (2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

  (3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

  (4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

  分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。

有理数的乘法数学教案 篇3

  教学目标

  1、知识与技能

  使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便。

  2、过程与方法

  通过对问题的探索,培养观察、分析和概括的能力。

  3、情感、态度与价值观

  能面对数学活动中的困难,有学好数学的自信心。

  教学重点难点

  重点:熟练运用运算律进行计算。

  难点:灵活运用运算律。

  教与学互动设计

  (一)创设情境,导入新课

  想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好。那在学习过程中,大家有没有思考多个有理数相乘该如何来计算?

  做一做(出示胶片)你能运算吗?

  (1)234(-5)

  (2)23(-4)(-5)

  (3)2(-3)(-4)(-5)

  (4)(-2)(-3)(-4)(-5)

  (5)-1302(-20xx)0

  由此我们可总结得到什么?

  (二)合作交流,解读探究

  交流讨论不难得到结论:几个不为0的数乘,积的符号由负因数这个数决定。当负因数的'个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘。

  注意只要有一个因数为0,则积为0。

有理数的乘法数学教案 篇4

  一、教学内容

  人教版七年级数学(上)第一章第四节《有理数的乘除法》,见课本p28.

  二、学情分析

  在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。

  三、教学目标

  1、知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  四、教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  五、教学手段

  制作幻灯片,采用多媒体的现代课堂教学手段。

  六、教学方法

  注意创设问题情景,选择“情景---探索---发现”的教学模式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。在整个学习过程中,以“自主参与,勇于探索,合作交流”的探索式学法为主,从而达到提高学习能力的目的。

  七、教学过程

  1、创设问题情景,激发学生的求知欲望,导入新课。

  前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题(出示蜗牛爬的动画幻灯片)

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题。

  2、学生探索、归纳法则

  学生分为四个小组活动,进行乘法法则的探索。

  (1)教师出示蜗牛在数轴上运动的问题,让学生理解。

  蜗牛现在的位置在点o,规定向右的方向为正,向左的方向为负;现在时间后为正,现在时间前为负。

  a.+ 2 ×(+3)+2看作向右运动的速度,×(+3)看作运动3分钟后。

  结果:3分钟后的位置

  +2 ×(+3)=b. -2 ×(+3)

  -2看作向左运动的'速度,×(+3)看作运动3分钟后。

  结果:3分钟后的位置

  -2 ×(+3)=c. +2 ×(-3)

  +2看作向右运动的速度,×(-3)看作运动3分钟前。

  结果:3分钟前的位置

  +2 ×(-3)=d.(-2)×(-3)

  -2看作向左运动的速度,×(-3)看作运动3分钟前。

  结果:3分钟前的位置

  (-2)×(-3)=

  e.被乘数是零或乘数是零,结果是仍在原处。

  思考:积的符号与两个因数的符号有什么关系?

  积的绝对值与两个因数的绝对值又有什么样的关系?

  (2)学生归纳法则

  a.符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=同号得

  (-)×(+)=异号得

  (+)×(-)=异号得

  (-)×(-)=同号得

  b.积的绝对值等于。

  c.任何数与零相乘,积仍为。

  (3)师生共同用文字叙述有理数乘法法则。(出示幻灯片)

  3、运用法则计算,巩固法则。

  例1计算:

  (1)(-5) ×(-3);(2) (-7)×4; (3) (-3)×9; (4)(-3) ×(-)

  引导学生观察、分析例1中(4)小题两因数的关系,得出:

  有理数中仍然有:乘积是1的两个数互为倒数。

  例2.见课本p30页

  4、分层练习,巩固提高。

  巩固练习

  (1)确定下列两个有理数积的符号:

  (2)计算(口答):

  ① ② ③ ④

  ⑤ ⑥ ⑦ ⑧

  (3)。判断下列方程的解是正数、负数还是0。

  (1)4x= -16(2)-3x=18

  (3)-9x=-36(4)-5x=0

  5、小结

  (1)有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。

  (2)如何进行两个有理数的乘法运算:

  先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。

  6.作业布置

  课本p30页练习1,2,3.

  课后反思:

  本节内容是学生在小学学习过的乘法以及初中学习了有理数的加法,减法及混合运算的基础上,进一步学习的基本运算,它既是对前面知识的延续,又是以后学习有理数除法等数学知识的铺垫,起了承上启下的作用。对经历有理数乘法法则的探索过程,使学生体验分类讨论的数学思想方法。

  教学设计上,强调自主学习,注重交流合作,让学生在自主探索过程中理解和掌握有理数的乘法法则,并获得数学活动的经验,提高学习能力。

有理数的乘法数学教案 篇5

  2.5有理数的减法

  题目

  有理数的减法

  课时1

  学校教者

  年级七年

  学科数学

  设计来源

  自我设计

  教学时间

  教学目标

  1、理解有理数减法法则,能熟练进行减法运算

  2、会将减法转化为加法,进行加减混合运算,体会化归思想

  重点

  有理数的减法法则的理解,将有理数减法运算转化为加法运算

  难点

  有理数的减法法则的理解,将有理数减法运算转化为加法运算

  教学方法

  讲授教学过程

  一、情境引入:

  1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)

  2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?

  探索新知:

  (一)有理数的减法法则的探索

  1.我们不妨看一个简单的问题:(-8)-(-3)=?

  也就是求一个数“?”,使(?)+(-3)=-8

  根据有理数加法运算,有(-5)+(-3)= -8

  所以(-8)-(-3)= -5 ①

  2.这样做减法太繁了,让我们再想一想有其他方法吗?

  试一试

  做一个填空:(-8)+= -5

  容易得到(-8)+(+3)= -5 ②

  思考:比较①、②两式,我们有什么发现吗?

  3、验证:

  (1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?

  3-(-5)=3+;

  (2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?

  (-3)-(-5)=(-3)+;

  (2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少?

  (-3)-5=(-3)+;

  (二)有理数的减法法则归纳

  1.说一说:两个有理数减法有多少种不同的情形?

  2.议一议:在各种情形下,如何进行有理数的减法计算?

  3.试一试:你能归纳出有理数的减法法则吗?

  由此可推出如下有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  字母表示:

  由此可见,有理数的减法运算可以转化为加法运算。

  【思考】:两个有理数相减,差一定比被减数小吗?

  说明:(1)被减数可以小于减数。如:1-5;

  (2)差可以大于被减数,如:(+3)–(-2);

  (3)有理数相减,差仍为有理数;

  (4)大数减去小数,差为正数;小数减大数,差为负数;

  (三)问题:

  问题1.计算:

  ①15-(-7)②(-8.5)-(-1.5)③ 0-(-22)

  ④(+2)-(+8)⑤(-4)-16 ⑥

  问题2.(1)-13.75比少多少??

  (2)从-1中减去-与-的和,差是多少?

  (四)课堂反馈:

  1、求出数轴上两点之间的距离:

  (1)表示数10的点与表示数4的点;

  (2)表示数2的点与表示数-4的点;

  (3)表示数-1的点与表示数-6的点。

  归纳总结:

  1.有理数减法法则2.有理数减法运算实质是一个转化过程

  达标测评

  【知识巩固】

  1.下列说法中正确的是( )

  A减去一个数,等于加上这个数。 B零减去一个数,仍得这个数

  C两个相反数相减是零。 D在有理数减法中,被减数不一定比减数或差大

  2.下列说法中正确的`是

  A两数之差一定小于被减数

  B减去一个负数,差一定大于被减数

  C减去一个正数,差不一定小于被减数

  D零减去任何数,差都是负数

  3.若两个数的差不为0的是正数,则一定是

  A被减数与减数均为正数,且被减数大于减数

  B被减数与减数均为负数,且减数的绝对值大

  C被减数为正数,减数为负数

  4.下列计算中正确的是

  A(—3)-(—3)= —6 B 0-(—5)=5

  C(—10)-(+7)= —3 D | 6-4 |= —(6-4)

  5.(1)(—2)+________=5;(—5)-________=2

  (2)0-4-(—5)-(—6)=___________

  (3)月球表面的温度中午是1010C,半夜是-13oC,则中午的温度比半夜高____

  (4)已知一个数加—3.6和为—0.36,则这个数为_____________

  (5)已知b ,则a,a-b,a+b从大到小排列________________

  (6)0减去a的相反数的差为_______________

  (7)已知| a |=3,| b |=4,且a,则a-b的值为_________

  6.计算

  (1)(—2)-(—5)(2)(—9.8)-(+6)

  (3)4.8-(—2.7)(4)(—0.5)-(+)

  (5)(—6)-(—6)(6)(3-9)-(21-3)

  (7)| —1-(—2)|-(—1)

  (8)(—3)-(—1)-(—1.75)-(—2)

  7.已知a=8,b=-5,c=-3,求下列各式的值:

  (1)a-b-c;(2)a-(c+b)

  8.若a0,则a,a+b, a-b, b中最大的是

  A. a B. a+b C. a-b D. b

  9.请你编写符合算式(-20)-8的实际生活问题。

  教与学反思

  你有什么收获?

  教学反思

  1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生教学的引导者、伙伴的新型师生关系。

  2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力。另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性。在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的。

有理数的乘法数学教案 篇6

  教学目标

  1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数。

  2、能力目标:能应用正负数表示生活中具有相反意义的量。

  3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系。教学重难点

  重点:理解有理数的意义。

  难点:能用正负数表示生活中具有相反意义的量。

  教学过程

  一、创设情境、提出问题

  某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分。两个队答题情况见书上第23页。

  二、分析探索、问题解决

  分组讨论扣的'分怎样表示?

  用前面学的数能表示吗?

  数怎么不够用了?

  引出课题。

  讲授正数、负数、有理数的定义。

  用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数。启发学生再从生活中例举出用负数表示具有相反意义的数。

  三、巩固练习

  1、用正数或负数表示下列各题中的数量:

  (1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;

  (2)球赛时,如果胜2局记作+2,那么-2表示______;

  (3)若-4万表示亏损4万元,那么盈余3万元记作______;

  (4)+150米表示高出海平面150米,低于海平面200米应记作______.

  分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

  2、下面说法中正确的是。

  a.“向东5米”与“向西10米”不是相反意义的量;

  b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

  c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

  d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.

  三、小结回顾、纳入体系

  学生交流回顾、讨论总结,教师补充如下:

  概念:正数、负数、有理数。

  分类:有理数的分类:两种分法。

  应用:有理数可以用来表示具有相反意义的量。

有理数的乘法数学教案 篇7

  一、教材分析

  有理数的乘法是继有理数的加减法之后的又一种基本运算。它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。对后续知识的学习也是至关重要的。

  二、学情分析

  对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。

  三、教学目标 (核心素养立意)

  1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。

  2.初步培养学生发现问题、分析问题、和解决问题的能力。

  3.通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣,(4)传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。

  四、教学重、难点

  重点:有理数的乘法法则。

  难点:有理数乘法的符号法则

  五、教学策略

  我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。

  六、教学过程(设计为七个环节)

  (一)复习导入 创设情境

  我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。进而引入本节课题,以问题引领来激发学生求知欲。

  (二)师生互动 探究新知

  要求学生自主学习课本内容,完成课文中的填空。我给与学生充足的时间和空间。 通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。(板书:法则)(确定有理数乘法运算的两步模型:先定符号,在求绝对值)

  这样设计的目的是

  (1)构造这组有规律的'算式让学生通过观察,来发现算式和结果在符号、绝对值方面的关系,找到乘法结果的符号规律,突破本节课的难点。同时又突出了本节课的教学重点。

  (2)通过比较、分析、概括、讨论、展示,渗透分类讨论和从特殊归纳一般的数学思想和方法,提高学生整合知识的能力。使学生知道”如何观察”“如何发现规律”。

  (三)分析法则 掌握实质

  (有了以上的认识)通过设置问题4,让学生带着以上的结论,认真观察(-5)×(-3)这个算式,首先确定积的符号(同号得正,先定号),再确定积的绝对值(5×3=15,再求值)。第二小题让学生仿照第一小题填空、解答,理解法则的实质,真正掌握本节课的重点。这样设计是为了再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。

  (四)解决问题 综合运用

  通过习题(小试牛刀)的计算,既巩固了有理数乘法的法则,又明确了倒数的定义,(板书:倒数-乘积是1的两个数互为倒数)。在有理数范围内仍有意义。本环节通过让学生独立思考、分组讨论,完成填空,使学生有效的巩固重点化解难点。

  (五)体验成功 享受快乐

  利用摸牌游戏,抓住学生对竞争充满兴趣的心理特征,激发学生的学习兴趣,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。通过学生参与活动,调动学生学习的积极性。同时让学生通过本环节进一步理解有理数乘法法则,并在实际问题中进一步培养学生应用数学的意识,体现数学的应用价值。这也是数学核心素养的要求。

  (六)总结收获 畅谈体会

  在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。让学生充分发表自己的感受,并相互补充。 及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法。这样设计的目的是培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。

  (七)布置作业 巩固深化

  七、课后反思

  在课堂教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律;采用诱思探究教学法,把课堂还给学生,让他们主动去参与,去探究,去分析。通过创设、引导、渗透、归纳等活动让学生在不知不觉中掌握重点,突破难点,发展能力,养成良好的数学学习习惯。更好的促进学生全面、持續、和谐的发展。本节课的设计一定还存在不少的纰漏和缺陷,敬请各位同仁批评指正。谢谢大家!