有关分数除法教案范文

2023-08-30

有关分数除法教案范文 篇1

  教学目标:

  能力目标:

  培养学生动手动脑能力,以及解决实际问题的能力。

  知识目标:

  提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。

  情感目标:

  培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。

  教学重点:解决实际问题。

  教学策略:在小组间交流合作的基础上,提高计算能力和计算速度。

  教学准备:小黑板

  教学过程:

  一、导入新课。

  同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。板书课题:分数除法(三)

  二、实施目标。

  1、出示题目:

  跳绳的小朋友有6人,是操场上参加活动总人数的。操场上有多少人参加活动?

  2、指名学生读题,并说出题目中分率的单位“1”的量是谁?知道不知道?

  3、先让学生试着做一做。

  4、交流作法。(根据学生做题情况导入方程的方法)

  5、教师指导学生用方程的方法解题。对用其它方法解答的同学,只要合理进行表扬。

  6、渗透用算术法解答此题。

  7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。

  三、巩固目标

  1、试一试第一题。

  指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。

  指导学生分清两问的不同,认清乘法和除法的区别。

  2、试一试第二题。

  独立解答,全班订正。

  四、课堂,教师和学生自评。

  板书设计:

  分数除法(三)

  解:设操场上有x人参加活动。

  =6

  ÷=6÷

  X=6×

  X=27

有关分数除法教案范文 篇2

  分数除法一(分数除以整数)

  教学目标和要求

  1, 在涂一涂、算一算等活动中,探索并理解分数除法的意义。

  2, 探索并掌握分数除以整数的计算方法,并能正确计算。

  3, 能够运用分数除以整数解决简单的实际问题。

  教学重点

  分数除以整数的计算方法。

  教学难点

  分数除以整数的计算方法

  教学准备

  教学时数

  1课时

  教学过程

  一, 涂一涂,算一算

  1, 把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

  2, 把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

  (1)第1题让学生可以先用画图、分数的意义等方法解决这个问题,然后根据除法的意义列出算式4/7÷2。在画图、理解分数的意义的基础上,生得出4/7÷2=2/7。因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。

  (2)鼓励学生探索第2题,联系分数乘法的意义,说明把4/7平均分3份,也就是求4/7的1/3,从而理解其基本算理。让学生在第1题的基础上来引导学生发现此时被除数的分子不能被除数整除,从而总结出分数除以整数的一般方法,即用分数乘以除数的倒数。

  二, 填一填,想一想

  1, 变换探索的角度,呈现三组算式,让学生实际运用,再次验证一个分数除以整数的意义和算理。2

  2, 师导学生根据前面的三个活动,总结算法。3,

  3, 让学生先列举出分数除法算式,并利用手中的学具具体地分一分,涂一涂,借助图形语言进行理解。

  三, 试一试

  练习分数除以整数的计算方法,沟通起分数除法与分数乘法的联系。

  四, 练一练

  1,第26页第2,3题,让学生独立解决。

  教学内容(课题)

有关分数除法教案范文 篇3

  【教学内容】

  【教学目标】

  知识目标:

  体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  能力目标:

  培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

  情感目标:

  培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  【教学重点】整数除以分数的计算法则推导过程。

  【教学难点】理解一个数除以分数的计算法则的推导过程,

  【教学过程】

  一、创设情境导入新课

  唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

  二、自主探究合作交流

  1、小组活动

  (1)出示教材27页“分一分”的第(1)、(2)题

  学生拿出准备好的圆片代表饼,动手分一分。

  每2张一份,可以分成多少份?4÷2=2(份)

  每1张一份,可以分成多少份?4÷1=4(份)

  师:每1/2张一份,可以分成多少份?

  学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)

  师:每1/4张一份,可以分成多少份?

  学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。

  4÷1/4=16(份)

  (1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

  (2)学生独立完成教材28页“填一填”“想一想”

  师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

  生:一个数除以分数等于乘这个分数的倒数。

  1、学生独立完成28页的“试一试”。

  集体反馈,同桌之间订正。

  师:通过刚才的计算你发现了什么?

  生:一个数除以一个数(零除外)等于乘这个数的倒数。

  三、课堂练习,巩固运用

  书本练一练

  四、课堂小结畅谈收获

  聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?

  (学生谈收获)

  【板书设计】

  整数除以分数

  a÷=a×(b、c≠0)

  教学反思

  本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:

  第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。

  第二层次:“画一画”的活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。

  第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。

  第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。

有关分数除法教案范文 篇4

  【学习目标】

  1、能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养自己的语言表达能力和抽象概括能力。

  3、养成良好的计算习惯。

  【学习重难点】

  1、重点是抽象概括出分数除法的计算法则。

  2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。

  【学习过程】

  一、复习

  1、列式,说清数量关系。

  小明2小时走了6 km,平均每小时走多少千米?____________________________

  速度=路程÷时间

  2、计算:151×4 ×3 ×2 ×6 971215

  8352÷4 ÷3 ÷2 ÷6 9765

  二、探索新知

  1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?

  2、探究2÷

  (1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3

  (2) 动手画线段图表示已知条件与问题的关系。

  1小时走的路程,再将线段平均分成3份,其中2份

  表示的就是2小时走的路程。 3

  (3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?

  2要怎样计算?它把除法转化成什么?怎样转化? 3

  55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷

  4、通过上面的2道计算题,你发现了什么?你会用自己的`方式表示下你发现的规律吗?

  ______________________________________________________________

  三、知识应用:独立完成P31“做一做”的第1、2题。(组长检查核对,提出质疑。)

  四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。

  五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

有关分数除法教案范文 篇5

  教学目标:

  1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养学生的语言表达能力和抽象概括能力。

  3、培养学生良好的计算习惯。

  教学重点:

  总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

  教学难点:

  利用法则正确、迅速地进行计算,并能解决一些实际问题。

  教具准备:多媒体课件、实物投影。

  教学过程:

  一、旧知铺垫(课件出示)

  1、计算下面,直接写出得数

  ×4 ×3 ×2 ×6

  ÷4 ÷3 ÷2 ÷6

  2、列式,说清数量关系

  小明2小时走了6 km,平均每小时走多少千米?

  (速度=路程÷时间)

  二、新知探究

  (一)、例3,

  1、实物投影呈现例题情景图。

  理解题意,列出算式:2÷ ÷

  2、探索整数除以分数的计算方法

  (1)2÷如何计算?引导学生结合线段图进行理解。

  (2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

  (3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

  (4)根据学生的回答把线段图补充完整,并板书出过程。

  先求小时走了多少千米,也就是求2个,算式:2×

  再求3个小时走了多少千米,算式:2× ×3

  (5)综合整个计算过程:2÷ =2× ×3=2×

  (二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

  (三)、计算÷,探索分数除以分数的计算方法

  1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

  ÷ = × =2(km)

  2、学生用自己的方法来验证结果是否正确。

  3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

  三、当堂测评

  1、P31“做一做”的第1、2题。

  2、练习八第2、4题。

  学生独立完成,教师巡回指点,帮助学困生度过难关。

  小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

  四、课堂总结

  1、这节课你们有什么收获呢?

  2、在这节课上你觉得自己表现得怎样?

  设计意图:

  这两节课的教学我从以下着手:

  1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

  2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

  教学后记

有关分数除法教案范文 篇6

  教学目标

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。

  教学重难点

  教学重点:弄清单位“1”的量,会分析题中的数量关系。

  教学:难点:分数除法应用题的特点及解题思路和解题方法。

  教学过程

  一、复习

  出示复习题:

  1、下面各题中应该把哪个量看作单位“1”?

  2、用方程解下列各题。

  3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?

  让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重×4/5=体内水分的重量。

  4、指名口头列式计算。课件出示。

  二、新授

  1、教学例1

  根据测定,成人体内的水分约占体重的2/3,而儿童

  体内的水分约占体重的4/5,小明体内有28千克水分,

  他的体重是爸爸体重的7/15,小明的体重是多少千克?

  爸爸的体重是多少千克?

  例1的第一个问题:小明的体重是多少千克?

  (1)读题、理解题意,并画出线段图来表示题意:

  (2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量

  (3)这道题与复习题相比有什么相同点和不同点?

  (相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)

  (4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)

  (5)启发学生应用算术解来解答应用题。

  先在小组内独立解答。

  课件演示计算的算式。

  (根据数量关系式:小明的体重×4/5=体内水分的重量,

  反过来,体内水分的重量÷4/5=小明的体重)。

  2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?

  (1)启发学生找到分率句,确定单位“1”。

  (2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

  (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)

  爸爸:

  小明:

  根据数量关系式:爸爸的体重×7/15=小明的体重

  小明的体重÷7/15=爸爸的体重

  ①解方程:解:设爸爸的体重是χ千克。

  7/15χ=35

  χ=35÷7/15

  χ=75

  ②算术解:35÷7/15=75(千克)

  课件演示计算的算式。

  3、用方程解应用题应注意哪些问题

  首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间

  的等量关系,再确定设哪个量为χ,并列出方程.

  4、巩固练习:P38“做一做”课件出示:

  学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、巩固应用

  1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?

  (先分析数量关系式,然后确定单位“1”,最后再进行解答。)

  2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?

  (注意引导学生发现250ml的鲜牛奶是多余条件)

  3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?

  (引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)

  4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?

  独立完成后订正。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。

有关分数除法教案范文 篇7

  教学目的

  1理解分数除法的意义,掌握分数除法的计算方法。

  2进一步培养学生抽象概括的能力和计算能力。3进一步渗透转化的数学思想。教学重点理解分数除法的意义,掌握分数除以整数的计算方法。教学难点培养数学能力,渗透转化思想。课型讲练课教法讨论、讲解教具投影

  板书设计1分数除以整数例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?解:4/52 = 0.82 = 0.4(米)4/52 = 42/5 = 0.4(米) 4/52 = 4/51/2 = 0.4(米) 课后小结内容设计合理,结构紧凑,一步一步让学生体会分数除以整数,可以有多种方法解答,只有把除以整数改写成乘整数的倒数,这样才是最简便的,学会了把新知改变成旧知来解决问题的这种学习方法,拓展了思路,活跃了思维。 教学过程意图媒体教师活动学生活动

  一、复习导入新课为迁移做准备

  明确分数除法意义投影 板书 投影 小结 板书1列式计算:一袋洗衣粉重1/2千克,4袋洗衣粉重多少千克?1/24 或41/22改编并列式:把上题改编成两道除法应用题① 4袋洗衣粉重2千克, 一袋洗衣粉重多少千克?2 4 = 1/2(千克)②一袋洗衣粉重1/2千克, 几袋洗衣粉重2千克?21/2 = 4(千克)3讨论:结合以上三题,请同学们思考分数除法的意义。通过以上数学活动,同学们已经明确了分数除法与整数除法的意义相同,是已知两个因数的与其中的一个因数,求另一个因数的运算。那么分数除法又怎样计算呢?今天我们就来研究这个问题。课题:分数除法指名口答 求4个1/2是多少。 生编题,师板书。 根据上题数量关系说出结果

  二、新课学习分数除法的计算方法

  学习分数除法的计算方法板书 激发兴趣 汇报 板书

  板书 1出示例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?理解4/5米的意义 ?米 ?米

  4/5米通过以上活动,我们进一步理解了题意,你能否根据题意把它转化成已学过的知识进行计算?解:①4/52 = 0.82 = 0.4(米)②4/52 = 42/5 = 0.4(米) ③4/52 = 4/51/2 = 0.4(米)重点说明③把4/5米平均分成2份,求每份是多少,就是求4/5米的1/2是多少米?列式是4/51/2。2尝试计算方法:三选一计算3/85 1/32 5/93①3/85 = 3/81/5 = 3/403/85 = 35/8 = 0.6/8 = 3/403/85 = 0.3755 = 0.075②1/32 = 1/31/2 = 1/6 1/32 = 12/3 = 0.5/3 = 1/6③5/93 = 5/91/5 = 5/27哪种方法最好,为什么?3用这种最简便方法计算:7/1314

  5/9104归纳计算法则:①口述做上述两题的方法②除以10 改写成乘1/10。③1/10是10 的倒数。分数除以整数(0除外),等于分数乘这个整数的倒数。审题列式 理解意义

  讨论方法

  选择自己喜欢的方法计算其中一题 讨论③最适用 小组讨论 为什么要0除外

  三、练习巩固分数除法的计算法则投影

  投影 1计算:14/157 4/53 4/1182填空:2/35 = 2/3( )3/79 = 3/7( )5/610 = 5/6( )19/208 = 19/20( )3/116 = 3/11○1/65/66 = 5/6○( )12/173 = ( )○( )3课后讨论:2/73你会做,32/7你行吗?认真计算

有关分数除法教案范文 篇8

  1、理解分数与除法的关系;会用分数来表示两数相除的商;会进行简单的问题解决;

  2、引导学生参与探索分数与除法关系的全过程,注意结合分数的意义,进行分析。

  理解分数与除法的转换,理解一个数是另一个数的N/N的关系

  小组合作探究、操作法

  例题放大图,学生自备彩色笔

  一课时

  一、复习与导入

  1、回顾。

  什么叫分数?举例说明。

  分数单位是什么?举例说明。

  3/4吨的分数单位是吨,它包含有个这样的单位。个1/5米是4/5米;3/4千克是3个千克。

  2、导入

  A、计算下列各题的商:

  15÷3 24÷6 3÷21

  B、口答出商;15÷3=5 ;24÷6=4;3÷21得不到整数的商,也除不尽;如果用循环小数表示循环节的数字也不简单,怎么办呢?引出课题。

  二、探究与发现

  (一)引进生活情境,激活旧知

  1、少先队五年级大队准备在周末举办一联欢会。舞台前面的边长为4米,把它平均分成5份,便于摆花贫。每份的长度会是多少米?

  这个问题交给我们班的同学帮助策划解决。还是以小组为单位,请各组同学把方法和相应的结果都考虑一下。

  2、学生小组活动,师巡,了解并采集相关信息。

  3、交流汇总。

  4÷5=4/5(米)

  (二)议一议,进一步发现规律

  1、观察书上22页填表

  让学生独立完成,说明发现了什么?

  2、汇报交流

  3、同桌互相交流关系

  4、练习

  (1) 3÷9=/ 1÷6=/

  (2)÷=4/7 3÷21=/

  (三)两数间的商的又一种关系。

  1、示例3的情境图(放大挂图)

  学生观察这幅图给我们提供了哪些信息?

  2只兔 ;4只鸡;3只鸭。

  根据提供的信息,我们能不能从中找出它们之间的相互关系,当然我们今天主要是考虑商的关系。

  学生可能会从量的多少去发现,师注意把重点转移到商的关系方向上来,现进行提取板书:

  (1)兔的只数是鸭的几分之几? 2÷3=2/3

  (2)鸡的只数是鸭的几分之几? 4÷3=4/3

  还能再提问吗?

  学生继续提问

  2、分析与感悟

  我们可以继续提出很多问题,但仅从以上的各个问题中,我们可以体会到什么?(把感觉集中到数量关系上来)

  从生的从多交流中取得共识:求一个数的几分之几与求一个数是另一个数的几倍一样,都是用除法。

  一个数÷另一个数(结果转化为分数形式N/N)

  三、全课总结

  这节课我们共同探讨了什么问题?有什么新收获?

  概括关键词:关系------几分之几

  四、作业

  4、5、6、9

有关分数除法教案范文 篇9

  设计说明

  苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。

  另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣

  课前准备

  教师准备 PPT课件、长方形包装纸

  学生准备 长方形纸

  教学过程

  ⊙创设情境,提出问题

  1.问题导入。

  师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。

  请你们列出算式并计算。

  (1)每人吃张饼,4个人共吃多少张饼?

  (2)把2张饼平均分给4个人,每人分得多少张饼?

  (3)有2张饼,每人分得张饼,可以分给几个人?

  (引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)

  2.揭示分数除法的意义。

  讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。

  ⊙合作交流,探究新知

  1.引导参与,探究新知。

  (1)出示教材55页例题。

  师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?

  (2)动手操作,分一分,涂一涂。

  师:请大家拿出一张长方形纸,涂色表示出这张纸的。

  (学生动手操作,教师巡视指导)

  师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。

  (学生活动,教师指导)

  (3)观察发现。

  师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?

  预设

  (教师利用课件配合学生汇报)

  生1:把平均分成2份,每份是2个小格,占这张纸的。

  生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。

  设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。

  2.初探算法。

  师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?

  预设

  生:分母不变,被除数的分子除以整数得到的商作商的分子。

  提出质疑,验证猜想,理解新知。

  (1)尝试验证,发现问题。

  师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?

  (学生汇报验证的结果)

  师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)

有关分数除法教案范文 篇10

  教学目标

  1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

  2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

  教学重点

  找准单位1,找出等量关系.

  教学难点

  能正确的分析数量关系并列方程解答应用题.

  教学过程

  一、复习、引新

  (一)确定单位1

  1.铅笔的支数是钢笔的 倍.

  2.杨树的棵数是柳树的 .

  3.白兔只数的 是黑兔.

  4.红花朵数的 相当于黄花.

  (二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

  1.找出题目中的已知条件和未知条件.

  2.分析题意并列式解答.

  二、讲授新课

  (一)将复习题改成例1

  例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

  1.找出已知条件和问题

  2.抓住哪句话来分析?

  3.引导学生用线段图来表示题目中的数量关系.

  4.比较复习题与例1的相同点与不同点.

  5.教师提问:

  (1)棉田面积占全村耕地面积的 ,谁是单位1?

  (2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

  (3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是 公顷.

  答:全村耕地面积是75公顷.

  6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

  (公顷)

  (根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

有关分数除法教案范文 篇11

  单元目标:

  1.理解并掌握分数除法的计算方法,会进行分数除法计算。

  2.会解答已知一个数的几分之几是多少求这个数的实际问题。

  3.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

  4.能运用比的知识解决有关的实际问题。

  单元重点:

  理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题

  单元难点:

  理解分数除法的算理,列方程解答分数除法问题

  第一课时:分数除法的意义和分数除以整数

  教学目标:

  1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

  2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

  3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

  教学重点:

  使学生理解算理,正确总结、应用计算法则。

  教学难点:

  使学生理解整数除以分数的算理。

  教具准备:多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数除法的意义

  (1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

  (2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

  2、口算下面各题

  ×3 × ×

  × ×6 ×

  二、新知探究

  (一)、教学例1

  1、课件出示自学提纲:

  (1)出示插图及乘法应用题,学生列式计算。

  (2)学生把这道乘法应用题改编成两道除法应用题,并解答。

  (3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

  2、学生自学后小组间交流

  3、全班汇报:

  100×3=300(克)

  A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

  B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

  ×3= (千克) ÷3= (千克) ÷3=3(盒)

  4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

  分数除法的意义与整数除法相同,都是已知两个因数的积与其

  中一个因数,求另个一个因数。都是乘法的逆运算。

  (二)、巩固分数除法意义的练习:P28“做一做”

  (三)、教学例2

  (1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

  (2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

  (3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

  A、 ÷2= =,每份就是2个。

  B、 ÷2= × =,每份就是的。

  (4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

  4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

  三、当堂测评(课件出示)

  1、计算

  ÷3 ÷3 ÷20 ÷5 ÷10 ÷6

  2、解决问题

  (1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

  (2)、正方形的周长是4/5米,它的边长是多少米?

  学生独立完成。

  教师讲评,小组间批阅。

  四、课堂总结

  1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

  2、谁来把这两部分内容说一说?

  教学后记

  第二课时:一个数除以分数

  教学目标:

  1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养学生的语言表达能力和抽象概括能力。

  3、培养学生良好的计算习惯。

  教学重点:

  总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

  教学难点:

  利用法则正确、迅速地进行计算,并能解决一些实际问题。

  教具准备:多媒体课件、实物投影。

  教学过程:

  一、旧知铺垫(课件出示)

  1、计算下面,直接写出得数

  ×4 ×3 ×2 ×6

  ÷4 ÷3 ÷2 ÷6

  2、列式,说清数量关系

  小明2小时走了6 km,平均每小时走多少千米?

  (速度=路程÷时间)

  二、新知探究

  (一)、例3,

  1、实物投影呈现例题情景图。

  理解题意,列出算式:2÷ ÷

  2、探索整数除以分数的计算方法

  (1)2÷如何计算?引导学生结合线段图进行理解。

  (2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

  (3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

  (4)根据学生的回答把线段图补充完整,并板书出过程。

  先求小时走了多少千米,也就是求2个,算式:2×

  再求3个小时走了多少千米,算式:2× ×3

  (5)综合整个计算过程:2÷ =2× ×3=2×

  (二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

  (三)、计算÷,探索分数除以分数的计算方法

  1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

  ÷ = × =2(km)

  2、学生用自己的方法来验证结果是否正确。

  3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

  三、当堂测评

  1、P31“做一做”的第1、2题。

  2、练习八第2、4题。

  学生独立完成,教师巡回指点,帮助学困生度过难关。

  小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

  四、课堂总结

  1、这节课你们有什么收获呢?

  2、在这节课上你觉得自己表现得怎样?

  设计意图:

  这两节课的教学我从以下着手:

  1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

  2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

  教学后记

  第三课时:练习课

  第四课时:分数混合运算

  教学目标:

  1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

  2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

  3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

  4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

  教学重点:确定运算顺序再进行计算。

  教学难点:明确混合运算的顺序。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数混合运算的运算顺序

  (1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

  (2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

  (3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

  2、说出下面各题的运算顺序。

  (1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4

  (3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)

  3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

  二、新知探究

  1、教师课件出示例4

  2、课件出示自学提纲:

  (1)例4中的哪些条件和复习中的3相同?问题相同吗?

  (2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

  (3)尝试说说自己的解题思路并解答。

  3、学生根据提纲尝试解题。

  4、全班汇报

  (1)根据学生的回答,归纳出两种思路:

  A、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。

  B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

  (2)说说运算顺序,再进行计算。

  (1)计算1/5÷(2/3+1/5)×15

  让个别学生说出运算顺序并计算题目的得数。

  教师巡回指点,搜集存在问题。

  教师黑板出示问题,学生上台改正,并说明理由。

  (2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

  三、当堂测评

  练习九第1、2、3题:

  注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

  楼楼板到地面的高度实际上只有5层楼的高度。

  学生独立完成教师点评,解决疑难。

  学生相互得分,评选优胜小组。

  四、课堂小结

  这节课有什么收获?说一说。

  还有什么不懂的?提出来小组内解决。

  设计意图

  1、在课初始,我便从复习整数及小数的运算顺序入手,

  重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

  现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

  习加强计算的训练。

  2、当堂测评题将学生置于提高之处,联系实际生活解决问

  题,让学生体会到数学知识的广泛性和严谨性

  教学后记

  第五课时:练习课

  已知一个数的几分之几是多少求这个数的应用题

  教学目标:

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重点:

  弄清单位“1”的量,会分析题中的数量关系。

  教学难点:

  分数除法应用题的特点及解题思路和解题方法。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、根据题意列出关系式。

  (1)一个数的3/4等于12.

  (2)男生人数的11/12等于220人。

  (3)甲数的5/8是40.

  (4)乙数的4/5刚好是1/6.

  2、解决问题

  根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?

  (1)看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重× =体内水分的重量

  (2)指名口头列式计算。

  二、新知探究

  (一)教学例1.

  1、课件出示自学提纲:

  (1)这一例题和复习中的题有什么不同和相同呢?想一想。

  (2)有几个问题?都和哪些条件有关?

  (3)读题、理解题意,并画出线段图来表示题意

  (4)独立解决第一个问题。

  2、全班汇报

  (1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

  小明的体重× =体内水分的重量

  (2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

  (3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

  (4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

  3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?

  (1)启发学生找关键句,确定单位“1”。

  (2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

  (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

  爸爸的体重× =小明的体重

  ①方程解:解:设爸爸的体重是χ千克。

  χ= 35

  χ=35÷

  χ=75

  ②算术解:35÷ =75(千克)

  4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、当堂测评(课件出示)

  1、根据题意列出算式,不必计算(每题15分)。

  (1)一个数的2/5是40,这个数是多少?

  (2)一个数的3/8是24,这个数是多少?

  (3)甲数是100,占乙数的4/5,乙数是多少?

  (4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

  2、解决问题(40分)。

  某校有女生160人,正好占男生的8/9,男生有多少人?

  学生独立完成,教师巡回指点,注重学困生的提高。

  小组内订正、互评,做到兵强兵。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

  设计意图:

  本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

  教学后记:

有关分数除法教案范文 篇12

  设计说明

  本节课通过设置疑问,运用自主探索、合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳及交流的能力。本节课在教学设计上主要有以下两大特点:

  1.让学生在生活中感悟数学。

  从生活实际出发,从“分蛋糕”的情境入手,把教材内容与“数学现实”有机地结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强学生的数学应用意识,唤起学生对数学学习的兴趣。

  2.让学生体验成功的乐趣。

  数学课堂教学要着眼于学生的潜能和可发展性,充分相信学生,给学生提供充分的自主探索的时间与空间,鼓励学生自主地进行观察、实验、猜测、推理、验证、交流等数学活动(探索除法与分数的关系,探索假分数与带分数互化的方法),使学生在自主探索的过程中真正理解和掌握数学基础知识与基本技能、数学思想和方法,从而获得广泛的数学活动经验。

  课前准备

  教师准备 PPT课件

  学生准备 学具 三种颜色的纸条

  教学过程

  第1课时 分数与除法(一)

  ⊙设置疑问,导入课题

  1.下面各题的商可以分为哪几类?

  36÷6=6 4÷5=0.8 80÷5=16 5÷10=0.5

  3÷7=0.… 4÷9=0.4444…

  引导学生归纳分类:

  36÷6=6和80÷5=16的商为整数;

  4÷5=0.8和5÷10=0.5的商为有限小数;

  3÷7=0.…和4÷9=0.4444…的商为循环小数。

  2.师总结:两个自然数相除,不能整除的时候,它们的商还可以用分数来表示。今天我们就来学习这部分内容。[板书:分数与除法(一)]

  设计意图:复习旧知,回顾所学知识的内在联系,引出课题。

  ⊙层层深入,探索分数与除法的关系

  1.出示问题,理解题意,列出算式。

  课件出示:把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?如果把7块蛋糕平均分给3个小朋友呢?

  师引导学生读题,提问(1):把1块蛋糕平均分给2个小朋友,可以写出怎样的算式?把7块蛋糕平均分给3个小朋友呢?

  预设 生:根据除法的意义,可以分别列式为1÷2和7÷3。

  提问(2):把1块蛋糕平均分给2个小朋友,每人分到几块蛋糕?把7块蛋糕平均分给3个小朋友呢?

  预设 生:每人分别可以分到块和块。

  提问(3):与1÷2之间是什么关系?与7÷3呢?

  (学生观察、讨论后可以明确:1÷2=,7÷3=)

  2.初步探索除法与分数的关系。

  师:观察1÷2=,7÷3=,说一说整数除法中被除数和除数与得数中的分子和分母存在着什么样的关系。

  (学生小组讨论交流,汇报)

  师生共同总结:任何一个分数都可以表示为分子除以分母,其中,分子相当于被除数,分母相当于除数。即:被除数÷除数=(除数不为0)。

  如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

  质疑:这里的a和b是否可以是任意自然数?为什么?

  (不可以,这里的b≠0。在除法中,除数不能为0,所以在分数中,分母也不能为0。教师板书:b≠0)

有关分数除法教案范文 篇13

  教学目标

  (1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。

  (2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。

  教学重点、难点

  重点、难点:理解分数与除法的关系。

  教具、学具准备

  教 学过程

  备 注

  一、复习铺垫

  1、口述下列分数的意义:

  1/44/57/9

  2、口答列式计算。

  (1)植树节有120名少先队员栽树,平均分成12个小组。每个小组有多少名少先队员?

  120÷12=10(人)

  (2)把12米长的钢管平均截成6段,每段长多少米?

  12÷6=2(米)

  归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。用除法计算。

  如果把(2)题的12米改成1米,如何列式?

  1÷6

  它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。

  出示课题“分数与除法的关系”。

  二、教学新知

  1、教学例2。

  把1米长的钢管,平均截成6段,每段长多少米?

  (1)边作图边讲解。

  “1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的长。所以

  1÷6=1/6(米)

  (2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)

  2、教学例3。

  把3只月饼平均分成4份,每份是多少?

  教学过程

  备 注

  (1)读题后指名学生列式:

  3÷4

  (2)边讲解边出示图式

  (3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。

  第二种方法是把3只月饼看作单位“1”,把它平均分成4份,表示这样的1份就是3/4只。

  得出3÷4=3/4(只)

  :从上面两例说明,当两个自然数相除,它们的商可以用分数来表示。

  3、归纳分数与除法的关系。

  (1)观察例2、例3的算式。

  1÷6=1/6(米)

  3÷4=3/4(只)

  (2)思考分数与除法有什么关系?

  (3)结论:

  被除数÷除数=被除数/除数

  (4)练一练:

  课本P75第1题。

  把分数改写成除法算式。

  4/7=÷21/25=÷

  14/27=÷7÷=7/

  讨论7÷=7/在括号里能填什么数?能否填任何数?为什么?

  结论:在除法中,除数不能为零。

  在分数中,分母不能为零。

  三、练习反馈

  1、7分米是几分之几米?

  23分钟是几分之几小时?

  学生独立练习后集中反馈,说一说思考过程。

  :“7分米是几分之几米”实际上是求7分米是1米(即10分米)的几分之几?同理,23分钟是几分之几小时也就是求23分钟是1小时(即60分钟0的几分之几,用除法计算。

  把低级单位的名数聚成高级单位的名数,用进率去除低级单位名数的数值,结果可以用分数表示。

  2、练一练:

  课本P76第5题填在书上。

  四、课堂练习

  课本P76第2、3、4题。

  五、课后作业《作业本》

  学生能理解分数与除法的关系,掌握两个自然数相除,可用分数表示。大部分学生能运用分数与除法的关系,把低级单位的名数聚成高级单位的名数。

有关分数除法教案范文 篇14

  一、教学目标:

  1、知识与技能:

  (1)会在分数乘除法应用题中找出单位“1”,会判断单位“1”是已知的还是未知的。

  (2)会列式解答分数乘除法应用题。

  2、过程与方法:

  通过整理、交流、合作、探究,体验探究的乐趣,感受数学的价值,培养学生“学数学,用数学”的意识。

  3、情感与态度:激发学生对找单位“1”的情感体验,有意培养学生的解答应用题意识,并最终养成正确解答应用题的良好习惯。

  二、教学重点:

  会在分数乘除法应用题中找出单位“1”,会判断单位“1”是已知的还是未知的。

  三、教学难点:

  会列式解答分数乘除法应用题,用所学知识解决实际问题。

  四、教学过程:

  一、预学

  课前学生诵读“数学经典”

  师生谈话:

  师:同学们都看过西游记吗?最喜欢里面哪个人物?为什么?

  生:看过,最喜欢孙悟空的勇敢机智,不怕困难的精神。

  师:今天老师就带大家一起重温西游戏故事,体验成功的乐趣,大家喜欢吗?

  (一)四基训练

  根据已知条件先找出“1”的量,再找出数量关系。

  1、花果山有45只小猴子,老猴子的只数是小猴子的4/5

  ×4/5=

  2、水帘洞里有12只大石碗,相当于小石碗数量的1/3

  ×1/3=

  3、孙悟空体重40千克,占猪八戒体重的1/5

  ×1/5=

  (二)自主探究

  1、镇元大仙的人参果树上结了80个人参果,孙悟空一棒子打落了3/8,打落了多少个人参果?

  2、师徒四人在翻越"狮驼岭"大战时,猪八戒消灭了150个妖怪,是沙僧消灭妖怪数量的5/7,沙僧消灭了多少个妖怪?

  3、孙悟空在车迟国与虎力大王斗法比求雨。孙悟空施法时,大雨整整下了48小时。虎力大王求雨的时间比孙悟空少5/8,虎力大王求雨时大雨下了多少小时?

  4、孙悟空在狮驼岭与大鹏妖怪斗法,大鹏每秒可飞行48千米,要比孙悟空的速度快1/5,孙悟空施展法力时每秒可飞行多少千米?

  问题:

  (1)找出各题里的“1”,说说它是已知还是未知,用方程解答还是用算术方法解答呢?

  (2)找出数量关系。

  A:()×3/8=()

  B:()×5/7=()

  C:虎力大王求雨的时间=Ο×5/8

  D:Ο×1/5=大鹏的速度

  (3)列式或列方程

  学生首先自主学习十分钟,当有质疑时可互学或小组内组学,从而进入互学环节。

  二、互学

  (一)小组交流,展示点评:

  先在小组内交流

  小组长组织,组内成员依次交流

  小组内讨论导学目标中的每个问题,组长并记录好。

  (二)由小组在班内展示,学生点评

  提示:台上交流的小组交流时,其他小组要与台上小组做好互动,如果有同学说错了(及时指正)或不完整要做好补充。

  中心发言组发言结束后,由主持人或组长总结本组学习的内容或本组在发言时的表现。然后由各位学生对这个小组做出评价,老师可以进行总评,适当的发言。

  预设:

  虎力大王求雨的时间=+×5/8

  有少数学生不会判断加还是减,关键在于不知道哪个量多哪个量少。

  1、找数量关系。

  A:树上结的果子数×3/8=打落的果子数

  B:沙僧消灭妖怪的数量×5/7=猪八戒消灭妖怪的数量

  C:虎力大王求雨的时间=孙悟空求雨的时间-孙悟空求雨的时间×5/8

  D:孙悟空的'速度+孙悟空的速度×1/5=大鹏的速度

  (3)列式或列方程

  A:80×3/8

  师点拨板书:

  以a为单位1,a已知,求b(另一个量)b=a×()/()

  B:解:设沙僧消灭妖怪的数量为X个5/7X=150

  师点拨板书:

  以a为单位1,a未知,求a,设a为()/()=b(是已知的另一个量)

  C:48-48×5/8

  师点拨板书:稍复杂的

  以a为单位1,a已知,求b(另一个量)b=a+(-)a×/()

  D:解:设沙僧的速度为+1/5X=48

  师点拨板书:稍复杂的

  以a为单位1,a未知,求a,设a为+(-)/()=b(另一个量)

  三、评学:

  (一)巩固反馈

  1、孙悟空在王母娘娘的蟠桃园里捣乱,打落了120个红色的桃子,打落的青色的桃子比红色的桃子还要多1/3,孙悟空打落了

  多少个青色的桃子?

  2、唐僧的体重为60千克,比孙悟空体重多1/5,孙悟空的体重是多少千克?

  3、花果山的猴子真多,老猴子和小猴子共有81只,其中老猴子的只数是小猴子只数的4/5。花果山里老猴子和小猴子各有多少只?

  (1)找出各题中的“1”,是已知还是未知?你确定可以用什么方法解决问题更合适?

  (2)你能准确的找出题里的数量关系吗?请根据数量关系列式或列方程。

  (二)拓展提升

  孙悟空和猪八戒比法力,在一座高大的山中间要开出一条平整的大路。孙悟空单独做用8分钟就可以完工,猪八戒单独做得用12分钟才可以完工。如果孙悟空先开凿3分钟后,猪八戒再加入合作,他们师兄二人还需要几分钟就可以完工?

  属于哪类型的分数应用题?

  解决此类应用题要注意哪些问题?

  (三)随堂检测

  1、松树有80棵,是柳树的棵数的5/8,柳树有多少棵?

  2、美术小组有25人,手工小组的人数比美术小组少1/5,手工小组多少人?

  3、松树有80棵,比柳树的棵数多5/8,柳树有多少棵?

有关分数除法教案范文 篇15

  教学目标:

  4、学习运用线段图帮助分析数量关系。

  5、加强列方程的思维训练。

  6、培养学生分析问题解决问题的能力。

  教学过程:备注

  活动一:复习与准备

  1、根据题意列出方程。

  (1)、六年一班有15人参加了合唱队,占全班人数的1/3,六年一班有多少人?

  (2)、美术小组的人数比航模小组多1/4。美术小组的人数比航模小组多5人。航模小组有多少人?

  活动二:出示例2

  一、

  1、审题。

  2、看例题的插图,理解题目的意思,说说知道了什么,要求什么

  3、分析题意,说说你对美术小组的人数比航模组多1/4这一条件的理解。

  4、理解数量关系

  二、

  1、分析、解答

  2、说说数量关系。

  3、学生根据得到的数量关系列方程解答。

  4、交流各自的解法。

  小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。

  活动三:

  巩固联系:

  1、41页7、8题

  2、41页10题

  板书设计