分数的意义教案优秀 篇1
学习内容:
课本第60—61页内容,练习十一第1—4题。
学习目标:
1.我能通过学习知道分数是怎样产生的。
2.我能在正确认识单位“1”的基础上,理解分数的意义。
学习重难点:
我能理解单位“1”及分数的意义。
课前准备:
正方形纸
学习过程:
一、导入新课
二、合作探究、检查独学
1.小组内检查独学部分的题目完成情况,质疑探讨。
2.自学课本第60、61页内容。根据自学内容我发现:
(1)分数是如何产生的?
(2)分数的意义是什么?
(3)什么是单位“1”?
(4)议一议:分数的分母和分子与什么有关系?结合你创造的分数,说一说分数表示的是什么?
3.小组内合作交流,小组代表展示、汇报。
4.总结升华:分数的定义是:把单位“1”若干份,表示这样的或者的数叫做分数。
5.我能行:完成课本第63页练习十一第1—4题。
五年级下册数学分数的意义教案14
教学内容:
教材第75~76页内容及练习与应用第1—7题。
教学目标:
1、通过回顾与整理,使学生进一步加深对分数意义的理解
2、用分数的有关知识,熟练解决求一个数是另一个数几分之几的实际问题
3、进一步理解分数的基本性质,掌握约分和通分的方法。
4、通过小组交流的形式组织学生整理知识要点,体验自己学习的收获,建立合理的认知结构。
教学重点:
熟练解决求一个数是另一个数几分之几的实际问题
教学难点:
帮助学生建立合理的认知结构。
教学方法:
讲练结合法
教学过程:
一、回顾与整理
1、这一单元你学会了什么?
学生交流。
2、小组讨论书上的三个问题。
指名汇报。约分和通分的根据是什么?
约分要约到什么为止?什么是最简分数?通分一般用什么作公分母?
二、练习与应用
1、做第1题。
下面的涂色部分可用哪些分数表示?还能说出其他分数吗?说说你是怎样想的.?
2、做第2、3题。
学生独立完成。校对,说说自己的想法。
3、做第4题。
可以用直线上同一个点表示的数,有什么特点?
你准备怎样找呢?学生完成约分,说说哪些分数相等?学生独立画点。
5、做第5题。
学生独立完成。指名汇报方法。
6、第6题
学生先独立练习
引导比较A三道题目计算方法有什么相同?
B算式中选择的除数有什么不同?
C从中还能想到些什么?
沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。
7、第7题
练习后加强对比
引导学生区别清楚:一、第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位“1”,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二、第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称“米”。
三、课堂总结
通过今天的复习你有什么收获?
分数的意义教案优秀 篇2
分数的意义
分数的意义 总42(电36)
教学目标:使同学了解"分数"发生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.
教学重点:使同学理解"分数"的意义,弄清分母,分子和分数单位的含义.
教学难点:使同学理解"分数"的意义,弄清分数单位的含义.
教学课型:新授课
教具准备:课件
教学过程:
一、创设情景,温故引新
1,提问:A,大家知道分数吗 谁能说一个分数
B,你能举个实例说说这个分数的意义吗
2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.
3,揭示课题:分数的意义
二、联系实际,探究新知
自主学习,整体感知分数的知识.
(1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.
(2)自学理解:① 关于分数,自学后我又知道了些什么
② 我还有什么不明白的地方呢
③ 关于分数我还想知道什么
2,探究深化,进一步理解分数的意义.
(1)用分数表示下面各图中的阴影局部.[课件1]
(2)填空.[课件2]
① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( ).
② 把一块饼平均分成2份,每份是它的( )/( ).
③ 把一个正方形平均分成4份.1份是它的( )/( );3份是它的( )/( )
(3)用一张长方形的纸,折出它的1/4,并涂上阴影.
用一张正方形的'纸,折出它的3/8,并涂上阴影.
(4)抢答. [课件3]
① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢
④ 假如这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义
⑤ 假如把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义 假如是100;1000枝呢
(5)说说下列分数所表示的意义.[课件4]
5/7 3/8 3/( ) ( )/9 ( )/( )
3,小结.
我们可以把许多物体看作一个整体,比方:一堆苹果,一批玩具,一班同学,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我 把它叫做单位 "1".
板书: 一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.
三、加强练习,深化概念
竞赛:请两位同学站起来.
提问:A,这两位同学是这组人数的几分之几
B,这两位同学是两组人数的------- 这两位同学是全班人数的-------
四、家作
1,P88 .1,2
2,P89 .3
板书设计: 分数的意义
一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数
分数的意义教案优秀 篇3
教学目标
1,使学生知道分数是怎么产生的,理解分数的意义,明确分数与除法的关系,会比较分数的大小,认识真分数和假分数,知道带分数是一部分假分数的另一种形式,并能比较熟练地进行假分数与带分数,整数的互化。
2,使学生理解和掌握分数的基本性质,能比较熟练地进行约分和通分。
3,使学生理解求一个数是另一个数的几分之几用除法计算,并能解答求一个数是另一个数的几分之几的应用题。
教学重点
1,使学生理解分数的意义,明确分数与除法的关系,学会比较分数的大小。
2,使学生理解真分数和假分数的含义,知道带分数是假分数的一部
分,能熟练地进行假分数与带分数,整数的互化。
3,使学生理解和掌握分数的基本性质,能较熟练地进行约分和通分。
教学难点
1,使学生理解分数的'意义,理解分数和除法的关系,能根据分数的意义和分数与除法的关系,正确解答求一个书是另一个数的几分之几的应用题。
2,使学生认识真分数,假分数,学会真分数,假分数及带分数的互化;掌握分数的基本性质,能根据分数基本性质解决有关问题。
课时安排:
1,分数的意义……6课时
2,真分数和假分数……4课时
3,分数的基本性质……2课时
4,约分和通分……4课时
5,整理和复习……2课时
分数的意义教案优秀 篇4
教材分析
《分数的意义》是在四年级学生已初步认识分数的基础上,让学生理解把一个物体,一个计量单位或一些物体平均分成若干份。表示其中的一份或几份的数就是分数的意义。重点培养学生的理解、认知、实践操作能力。
知识目标:
A、指导分数的产生
B、在理解单位1的基础上,引导学生会说出分数的意义。
C、知道每个分数中的分数单位。
D、在实际生活中学会用分数表示的方法解决实际问题。
学情分析
在本节课中,教师不仅重视让学生掌握知识,并能十分重视学生对学习过程的体验和学习方法的渗透,重视学生的个性化思维的展示,让学生通过回忆想象、自学教材、学习交流、动手实践等数学学习活动来发现知识,感受数学问题的探索性,促进学生学会学习
教学目标
1.知道分数是怎样产生的,理解掌握分数的意义。
2.认识单位“1”,知道分数单位,使学生知道在实际生活中一个物体,一些物体,计量单位等都可以用单位“1”来表示。
3.知道分数在人们实际生活中的作用,会用分数来解决生活中的实际问题。
教学重点和难点
理解掌握分数的意义,并在实际生活中会应用分数解决问题。
教学过程
一.导课
1. 导入。
2. 提问。
3. 板书新课题《分数的意义》,齐读。
二、新授
1.出示例1:你能举例说明1/4的含义吗?结合生活实际用你喜欢的方式表示出来。(学生动手操作,折一折或画一画)
2、学生自由讨论交流,概括分数的意义。
3、找个别学生说,后师总,齐读。
4、出示1/8 、2/3 、3/4 、7/10结合生活实际,学习单位1,说一说议一议。
5、师总
6、看图结合实际,说说哪些可以看做单位1。
7、学习分数单位,过程(略)。
8、学生举例说明:A、分数的意义,B、单位1,C、分数单位。讨论交流。
三、反馈巩固练
1、出示图(小黑板)学生看图完成练习
2、拓展。
3、复习分数单位。
4、练习用分数表示涂色部分。
5、举例生活实际说说分数。
四、小结本课内容
A、学生谈这节课的收获。
B、师总。
五、布置作业
P63页 1、2、4题。
分数的意义教案优秀 篇5
教学目标:
1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,理解单位“1”知道分子、分母和分数单位的含义。
2、经历认识分数意义的过程,培养学生的抽象、概括能力。
3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力。
教学重点:
理解和掌握分数的意义,理解单位“1”的含义。
教学难点:
对单位“1”的理解。
教具和学具:
米尺、长方形白纸、圆形纸片、一米长的绳子、操作练习纸。
教学过程:
一、创设情景,温故引新。
1、出示1/4
师:认识吗?关于1/4你都知道些什么?
生:把一个物体平均分成4份,取其中的1份就用1/4表示。
生:4是分母,1是分子
生:它是一个分数。
师:同学们说的很好,那你们知道分数是怎样产生的吗?
二、教学分数的产生。
1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?
2、在古代,人们就已经遇到了这样的问题。(师讲解古人测量的情况)。课件呈现情境图,
3、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平均分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?
4、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示—这就产生了分数。(板书:分数的产生)
三、教学分数的意义。
1、动手操作,探索新知。
(1)操作。
师:看来同学们对分数已经有了一些初步的了解,课前老师给每一个小组都提供了四种材料,一张正方形纸、1分米长的线段、4个苹果、8只熊猫。
下面以小组为单位,根据这几种材料,通过折一折、画一画、分一分等方法,表示出1/4 学生动手操作,教师巡视。
(2)交流
师:老师看到每个小组都根据这几种材料表示出了1/4谁愿意来展示一下?
让学生在实物投影仪前向大家展示自己的操作方法及成果
生:把一个正方形平均分成4份取其中的一份就是这个正方形的。
把1分米长的线段平均分成4份取其中的一份就是这条线段的。
把4个苹果平均分成4份取其中的一份就是这些苹果的。 把8只熊猫平均分成4份取其中的一份就是这8只熊猫的。
(3)认识单位“1”。
师:同学们,我们利用那么多方式表示出来了1/4,那请大家回忆一下,在表示的过程中,有没有相同的地方?
生:都是把物体平均分成4份,表示其中的一份,就是1/4
(师板书:平均分成4份,表示其中的一份就是1/4)
师:在表示的过程中,有什么不同的地方吗?
生:分的东西不一样。
师:我们刚才是把哪些东西平均分的?
生:一张正方形纸、1分米长的线段、4个苹果、8只熊猫
师:象把一个正方形平均分,我们可以称之为把一个物体平均分
(课件显示:一个物体)
把一分米长的线段平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)
把4个苹果、8只熊猫平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)
师:同学们请看,象这样的一个物体、一个计量单位、一些物体都可以看作一个整体,这个整体我们可以用自然数“1”来表示,通常把它叫做单位“1”,(因为它可以表示一个整体,而不是一个具体的数,和自然数1不同,所以要加引号)
师:单位“1”到底指哪些?
生:一个物体,一个计量单位,一些物体。
师:很好,那么一个物体除了一个正方形外,还可以是什么?
生:一个苹果,一个面包。
师:一个计量单位还可以是什么?
生:
师:一些物体还可以是什么?
生:3只老虎、4个面包、8个人。
单位“1”很奇妙,它可以表示我们班的一个同学,也可以表示全校同学,还可以。它可以表示很大很大,大到宇宙万物;也可以表示很小很小,小到一粒微尘。
(4)、揭示分数的概念
1、师:一个物体,一个计量单位,一些物体可以用单位“1”表示,那么刚才在表示1/4的时候,我们实际上是把谁平均分成4份,表示其中的一份。
生:把单位“1” 平均分成4份,表示其中的一份,用1/4表示。
师:剩下的部分,用哪个数表示呢?
生:3/4
师:3/4表示什么呢?
生:把单位“1” 平均分成4份,表示其中的3份,用3/4表示、师:如果老师把单位“1”平均分成12份,表示其中的7份,用哪个分数表示?
生:7/12
师:像这样的分数,你还能说出来吗?
学生说:2/63/5…并说出表示什么?
师:刚才我们说了那么多分数,那么到底什么是分数,你能用一句话概括一下吗?
小组交流。
指名说(多找几个学生说)。
揭示概念(板书:把单位“1”平均分成若干份,表示这样的一份或几份都可以用分数来表示。)
5、强化理解概念
①、齐读概念
②谁能说说下面分数的含义?(课件出示练习)
6、理解分子分母的意义。
师:通过刚才的学习,大家知道了分数的意义,请同学们观察这些分数的分母,有的是4、有的是12、有的是6等,分母表示什么呢?
生:分母表示把单位“1”平均分的份数。
师:分子表示什么?(分子,表示取的份数)
四、教学分数单位。
师:整数中有计数单位个、
十、百、千、万分数是否也有计数单位呢?它的计数单位又是怎样规定的?请同学们打开课本自学。
显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,请任意说出一个分数考考你的同桌,说出这个分数的意义和分数单位。)
五、巩固练习、深化提高。
1、师:刚才同学们积极动脑,认真思考,学习了分数的有关知识。下面我们一起做个小游戏,看谁最善于动脑思考。老师手中有九个糖果,现在我要把这些糖果分给我们班的同学,谁想要?有要求:我说分数,你来拿糖,说对了才能把糖果拿走,谁想来?(学生上台拿,并及时鼓励)
师:请拿走这些糖果的三分之一,说一说你是怎样拿的?她拿的对不对?还剩几颗?(六颗),再请一个同学,请你拿走剩下糖果的三分之一,(两颗),咦,为什么都是三分之一 ,而俩人拿的糖果不一样多呢?(生:因为总数不一样。)
师:虽然取的份数相同,但单位“1”不同,得到的数量也不相同。
师:还剩4颗,谁还想要?请你拿走二分之一,她拿走了几颗?(2颗),为什么他拿走的是三分之一,而他拿走的是二分之一,却都是2颗呢?(生:单位“1”不同)师:也就是说单位“1”不同,分成的份数不同,得到的数量也可能是相同的。
师:最后还剩下2颗,老师这里不仅仅只有两颗,还有很多,老师要请同学们来猜一猜,这两颗糖果是老师现在所有糖果的九分之一,请问,老师现在一共有多少颗糖果?
师:同学们玩完了这个游戏,是不是轻松多了,下面老师要考考你们了,有没有信心全部通过?出示题目。
2、练习十一的第1、2、3、4题
六、课堂总结。
今天这节课我们学习了什么?你有哪些收获?
分数的意义教案优秀 篇6
教学内容:九年义务教育六年制小学实验课本,第十册,分数意义。
教学目标:
进一步理解分数意义,通过两个分数比较大小,深化学生对分数单位的理解。
培养学生判断推理的能力。
培养学生用辩证的观点看待问题。
教学重点、难点:
重点:进一步理解分数单位。
难点:(分数单位和分数单位的个数都不同的分数进行比较。)对分数单位的
深化认识。
教学过程:
1.复检
(1)前面我们对整数的小数有了一定的认识,我们研究整数和小数这部分知识,
关键的一点是什么?(数位、计数单位、进率)整数从右边起的前三位及它们的计数单位分别是什么?
(2)我们知道整数和小数都是十进制的数,谁能说说你是怎样理解“十进制”的?
小结:今天我们就在这个基础上来研究分数。[板书:分数]
2.新授
第一层:理解分数意义,初步理解分数单位这个概念。
出示 、
(1)看到 你能想到什么?(以 为一份有这样的2份)[板书: ]
(2)“ ”表示什么?[板书: ]这儿(指 后面)应该写什么?( 、 )
(3)第二排的数都表示的是几份?(一份)
(4)第二排的数与第一排的数之间有什么关系?
(5)什么是分数单位呀?
(6)分数单位与“1”之间有什么关系?
小结:既然同学们对分数单位这么感兴趣,我们这节课就重点来研究一下分数单位。
第二层:分数单位相同,分数单位的个数进行比较
出示
(1)我们观察一下这两个分数有什么特点?(分母相同)不说分母相同,还可以怎样说?(分数单位相同)分数单位相同也就是什么相同?(每份相同)[学生回答时注意前提条件]
(2)这两个分数的每份相同,也就是分数单位相同,我们看看这两个分数表示的大小相同吗?能不能比出大小?
(3)我们除了对这两个分数进行比较,还可以怎么样?(加减)
(4)进行加的结果是多少?( )12是怎么来的?什么没变?(分数单位)什么相加了?
(5)减的结果是什么?( )谁减谁?“2”是怎么来的,同样是什么没变,跟加法的道理一样不一样?
(6)在加减的过程中分母为什么没变?为什么分数单位相同可以直接相加减?
出示
问:这两个分数可以怎样?(比较、加减)
[也可将这两个分数与1进行比较]
小结:这两组数,分母都相同,也就是分数单位相同,在分数单位相同的情况下,比较两个分数的大小有什么规律?
[评:1.分母相同是外在的表面现象,教师引导学生透过现象看到分母相同,就是单位“1”相同,分数单位相同(每份相同)这样,就在“同分母分数比较大小中抓住了实质。不仅使学生掌握了比较大小的方法,更进一步理解了分数的意义,又为学习分数的计算奠定了知识和思维的基础。
2.让学生充分说理,每一个设问都给学生提供了运用概念解决实际问题的情境。如: 和 ,分母相同,说明单位“1”相同,分数单位相同。在分数单位相同的情况下,5个 比7个 小,所以 < 。这种严密的逻辑论述,体现出学生分析推理能力,对所学知识的认识又上升到了一个新的层次,培养学生逻辑思维能力,是培养创造思维的基础。]
第三层:分数单位的个数相同,分数单位的大小进行比较
出示
(1)分母还相同吗?(不同)有没有相同的地方(单位“1”相同,取的份数也相同。)
(2)谁大?( )5比7小,为什么 反而大呢?
出示:
问:观察这个分数有什么特点?请你判断一下这两个分数的大小。
小结:当单位“1”相同的情况下,分的份越多,它的分数单位就越小,分的份
越少,分数单位就越大。刚才我们研究了两组很有规律的分数,在这个基础上我们继续看。
[评:在分数单位比较的过程中,深化的分数单位的理解,为后面的分析推理提供依据。]
第四层:发散思维的训练,深化对分数单位的理解
出示:
问:我们观察一下这两个数,有什么特点?(分数单位与分数单位的个数都不同)有没有相同的?(“1”相同)“1”相同,分数单位不同,所取的份也不同。能不能进行比较呢?讨论一下。(可先将 与 进行比较,或 与 =1进行比较,再比较这两个分数的大小;或与“1”的一半进行比较)
出示
问:这组分数同样分子和分母都不相同,看能不能向刚才这种方法一样比较一下。(先将 与 进行比较)
小结:我们刚才比较了两个分数的大小,而且当分母相同的情况下,还可以把两个分数直接相加减,无论是比较还是加减,我们研究的关键的一点都是什么?(分数单位)
[评:发散思维的活动方式是分散的、辐射的、昊散式的发散思维的训练,目的使学生灵活运用知识,使思维更活跃,在培养学生创造思维中起重要作用,教师设计的三组题,为学生创设了各显其能,施展才华的条件,学生大胆地冲破思维的局限性,从不同角度,沿着不同的方向进行思考、想象、分析、推理,使问题得到解决。如:①因为 > 所以 >
②因为 > 所以 >
③学生大胆设想,都转化成分母相同再比较,等等。
学生方法的多样性,灵活性来源于对概念理解的深刻性,这种“一题多解”、“求异思维”的能力,是学生已具有创造性学习能力的体现。
第五层:通过假分数与带分数的互化,进一步认识分数单位,在这当中渗透分数单位与单位1之间的关系。
出示
(1)这个分数和我们前面研究的分数比较一下,有什么不同?(分子比分母大)分子比分母大,这样的分数叫假分数。(真假的假)那么我们前面研究的这些分数分子都比分母小,你们说,这些分数就应该叫什么呀?(真分数)
(2)分子比分母大说明什么?(这个数比1大)
(3) 我们就可以看作几部分?
(4) 和1 的大小一样不一样?我们就可以用什么符号连接?
小结:这两个分数所表示的意义一样吗?它们之间有什么联系?(讨论)
[评:通过假分数与带分数的互化,进一步认识分数单位,渗透分数单位与单位“1”之间的关系。这里运用观察、比较、适时的讨论,学生对假分数和带分数的意义有了正确的认识。]
3.质疑
4.总结
这节课我们研究了什么?分数单位在分数这部分知识中占有很重要的位置,这一知识我们研究得透,对于我们今后研究有关的知识会有很大的帮助。
板书设计
反思:
本节课结构严谨,重点突出,始终给基本概念“分数单位”以中心地位,知识呈现过程清晰,过程设计符合儿童认知。
以“比较分数大小”这一知识为载体,把“分数单位”这一核心概念挖掘来,在不断的深化和扩展中,学生既学了知识又为后叙知识做好铺垫,同时促进了学生思维质的发展。
教师语言简练,设问有利于激发学生的思维,学生不仅学会了知识,增长了能力,在生生相互沟通中以科学的态度对待科学知识,在民主的氛围中学生身心和谐发展。
分数的意义教案优秀 篇7
教学内容:
教材第73到74页分数的意义,“练一练”,练习十三1到4题。
教学目标:
1、了解分数的产生,理解分数的意义,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。
2、培养学生抽象概括能力。
3、感受“知识来源于实践,又服务于实践”的观点。
教学重点:
理解分数的意义。
教学难点:
单位“1”的感知。
教学准备:
多媒体,实物投影仪
教学内容和过程:
一、创设情境
1、同学们,这是几?(板书“1”)
这里有1位老师,1位同学,1还可以表示什么吗?
我相信你们学了今天这节课以后,对1将会有一个更深刻地认识。
2、揭示课题
我们在四年级的时候学过分数,今天我们要继续来学习“分数的意义”。[板书]
[从学生身边熟悉的1引导学生对1的认识,使学生对所学知识有一个整体的感知,并对学习新的知识产生亲切感]
二、新授
1、这里有三幅图,我们一起来看一下。
出示书P73的三副图。(引导学生说出把……平均分成……,每份是它的……。)
(1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?( )
(2)出示长方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的5份呢?
(3)出示线段图提问:把1米平均分成10份,这样的1份是几分之几米?9份呢?
三、探索研究
1、现在请同学把目光集中到课桌上,看看老师给你们准备了什么啊?
一张白纸,一根1米长的绳子。
2、你们带了写什么材料呢?
(一堆物体)
3、这些材料能不能通过平均分,得到一些分数呢?
4、学生小组交流,分一分并汇报。
[从生活中挑选了一些实物,作为寻找分数的材料,首先引导学生观察这些材料并猜想能不能用平均分的方法得到分数,然后动手操作寻找分数。展示时重点展示平均分多个物体得到分数的操作过程,让学生感受可以把许多物体看作一个整体,把这个整体平均分成不同的份数,其中的一份或几份也可以用分数表示的过程。为抽象分数的意义做好铺垫,感悟分数就在生活之中。]
5、小结:
以前我们都是把一个物体,一个计量单位平均分,得到了一些分数,刚才你们在分的时候,还可以把许多个物体看成一个整体平均分得到分数。象这样一个物体,一个计量单位和多个物体组成的一个整体,都可以用自然数“1”表示,通常我们把它叫做单位“1”。(板书:单位“1”)
6、 讲授例题(多媒体出示)
出示5个桃子提问:这是什么?
把5个桃子看作(一个整体),平均分成5份,每份有几个桃子?占这个整体的几分之几?
2个桃子呢?
7、出示8片枫叶问:把8片枫叶看作一个整体,平均分成4份,每份几个泥人?占这个整体的几分之几?
6片枫叶呢?
8、结合前面分得的分数,揭示分数的意义。(板书)
9、复习分数各部分的名称及表示的含义。(小组讨论)
9、看书P74的概念。
10、做书上练一练。请两位学生回答。
11、总结,评价。
[学生通过自己动手找分数,在已经建立直观认识的基础上,归纳分数的意义,不强调死记硬背,让学生能用自己的语言归纳,接着引导学生看书进一步理解分数的意义。]
三、课堂实践
现在我们一起来闯三关。(网络教学)
1、第一关,用分数表示下面各图中的涂色部分。
2、第二关,用下面的'分数表示图中的涂色部分,对不对?
3、第三关,根据给出的分数在下面各图中画出阴影部分。
4、勇闯三关后,我们一起来进行自我检测。
请同学和你的同桌之间说一说这个分数在句子里所表达的意思,需要帮助的同学可以寻求电脑的帮助。
5、下面我们要来继续冲关,请你来看一看,哪些话中存在错误呢?
6、同学们做得都不错,下面我们一起来玩一个游戏。请你们拿出10粒棋子。
请你摆出它的1/2,是多少粒?12粒棋子的1/2,是多少粒?为什么同样是1/2,而你们有不同的答案呢?(单位“1”不同)
请你们表示出12粒棋子的1/2,1/3,1/4,1/6,是多少粒棋子?为什么单位“1”相同了,而你们的结果不同呢?(平均分的份数不同)
[让学生体会分数的意义,学生与学生,教师与学生之间互动交流,体现学生主体,教师主导的地位。]
四、课堂小结
今天这节课我们学习了分数的意义,下一节课我们继续来深入研究。
五、课堂作业
练习十三第4题。
六、回家作业
练习册
七、板书设计
分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。
分数的意义教案优秀 篇8
教学目标
1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。
2、通过分数的学习,培养学生动手操作,观察、思考、抽象概括的能力。
3、使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增强学生学习数学的兴趣。
教学重难点
教学重点:理解分数的意义
教学难点:认识单位“1”和概括分数的意义
教学工具
ppt
教学过程
一、温故知新:
师:三年级上学期我们已初步学习了分数,谁能说出几个分数哪?
生:
师:谁能说出分数各部分的名称:生说师板书。
师总结引入新课:从以上看来同学们对分数已经有了初步的认识,但是关于分数的知识还有很多,这节课我们一起进一步研究分数。
二、探究新知
(一)分数的产生
1、出示米尺:同学们这是什么?(生:米尺)知道干什么用的吗?(生:测量用的)好我们一起测量我们的黑板(或人的身高),老师量时要认真观察,看会遇到什么问题,想一想应如何解决?(生:最后测量时不够一米了)
师:(出示情景图)其实古人也发现类似的情况:他们用打了结的绳子来测量石头的长度,每两个结之间表示一个单位长度。发现这块石头长3段多一点。这时旁边记录人提出疑问:剩下的不足一段怎么记哪?
2、(出示一个西红柿图:)同学们,把1个西红柿平均分给2个同学,每人能分得一个完整的西红柿吗?
3、教师小结:生活中在进行测量、分物或计算时,往往不能正好得到整数的结果,要想准确表示结果,这时常用分数来表示,这样分数就产生了。(出示并板书:分数的产生)
T:小结:我们通过把一个物体、一个计量单位、或是一些物体等都可以平均分成4份,取其中一份得
3、教师总结:课件出示图,像这样一个物体、一个计量单位、或是一些物体等都可以看作一个整体,像这样的一个个整体都可以用自然数1来表示,这个1在数学上通常叫做单位“1”。
板书:一个整体可以用自然数1来表示,我们通常把它叫做单位“1”(齐读)
谁能说说自然数1与单位“1”有什么不同吗?生:…
我们把这个整体平均分成若干分,就是把单位“1”平均分成若干分,所以分数的意义是:
把单位“1”平均分成若干分,表示其中一份或几份的数就叫分数,齐读一遍
(同学们表现得非常棒,同学们看看看生活中的单位“1”。出示图)
四、巩固训练大闯关(看谁反应快、回答得对):
(出示练习题见课件)
1、填空:
2、学生独立完成书上练习十一1、2、3题。
五、总结:通过学习你学到了什么,有哪些收获?
通过这节课的学习,我们知道分数是怎样产生的,什么叫分数也就是分数的意义,还知道分数单位及单位“1”的概念,整节课同学们表现的都非常太棒,就请大家为自己的精彩表现鼓鼓掌!关于分数还有很多很多的知识呢!今后我们进一步进行探究。这节课就上到这儿,同学们再见!
分数的意义教案优秀 篇9
学习内容:
课本第75—76页例1及“做一做”第1题。
学习目标:
1、我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。
2、我能体会到数学知识间的内在联系,感受学习数学知识的价值。
学习重点:
我能理解和掌握分数的基本性质。
学习难点:
我能应用分数的基本性质解决简单的实际问题。
课前准备:
准备3张完全一样的正方形纸片。
学习过程:
一、导入新课
二、合作探究、检查独学
1、小组内检查独学部分的题目完成情况,质疑探讨,展示动手操作。
2、自学教材75页内容,思考下面的问题:
(1)通过例1的学习你发现了什么?
(2)它们的分子分母各是怎么样变化的?
(3)根据上面的例子,可以得出什么规律?
(4)根据分数与除法的关系,以及整数除法中商的变化规律,你能说明分数的基本性质吗?
分数的基本性质是:________________________________________ 。
3、小组代表展示、汇报
4、总结升华
5、巩固练习:完成课本第76页“做一做”第1题。
分数的意义教案优秀 篇10
教学目标:
使学生进一步理解百分数的意义,体会百分数与分数与分数、比的联系和区别,积累数学活动经验,进一步发展数感。
教学重点:
使学生更加准确把握用百分数表示数量的关系,进一步体会百分数与生活的联系。
教学过程:
一、基本练习
1.什么叫百分数?
2.说出下面百分数的实际意义
地球上陆地面积大约占29%,海洋面积大约占71%。
完成书上练习十九第4题的填空。
3.完成练习十九第5题:启发学生利用比所表示的份数关系进行思考,沟通比与百分数之间的关系。
4.完成练习十九第6题。
(1)说一说题中5%和60%的具体意义。
(2)独立完成书中的填空。
(3)交流自己的想法。
二、综合练习
1.完成练习十九第7题。
(1)出示题目,说说题目中百分数的实际意义。题目中的百分数有什么特点?
(2)讨论:
在这几种食物中,蛋白质含量最高的是哪一种?最低的呢?脂肪含量最高和最低的呢?
100克黄豆中大约含蛋白质和脂肪各是多少克?其他食物呢?
2.完成练习十九第8题。
(1)出示示意图,理解图意。
(2)讨论:图中的65%表示什么?还有多少没有完成?如果把已经完成的和没有完成的相加,结果是多少?
3.完成练习十九第9题。
(1)独自看图填空。
(2)汇报交流,并使学生意识到:百分号前面的数可以小于或等于100,也可以大于100。
4.讨论练习十九第10题和11题。
(1)第10题,先说出男生占40%是实际意义。
(2)第12题,让学生说一说什么情况下两个学校的女生人数相同,什么情况下不同。
三、全课。
分数的意义教案优秀 篇11
第一课时
教学内容:分数意义的认识
教学目标:
1、使学生了解分数的产生,单位“1”的含义,理解分数的意义。
2、培养学生的观察能力和抽象概括能力。
教学过程:
一、复习
1、把一块蛋糕平均分成3份,其中的1份用分数表示
2、把一个圆平均分成4份,其中的一份用分数表示。
3、把一条线段平均分成8份,其中的1份用分数表示。
4、用分数表示下面各图中的阴影部分。(p.67第1题)
5、用下面分数表示图中的阴影部分,对不对?为什么?
二、教学新课
1、一个食物、一个图形、一条线段都可以看作单位“1”。
2、举几个“1”。
3、其实一把铅笔、一群小羊、一盘苹果、一项工程等组成的整体,都可以看作单位“1”。
4、再举几个单位“1”。
5、把4支铅笔看做一个整体,平均分成4份,每份(1支)是这个整体的1/4,3份是整个整体的1/3。那么两份呢,4份呢。
6、把6只小羊看作一个整体,平均分成3份,每份(2)只是这个整体的1/3。2份是这个整体的2/3。
7、把12只苹果看作一个整体,平均分成4份,每份(3只)是这个整体的1/4,2份是这个整个的1/4。
8、一个食物,一个图形,组成一个整体一把铅笔,一群小羊都可以看作单位“1”。
9、判断题:单位“1”只能是一个物体、吗?
10、教学分数的概念:把单位”1“平均分成若干份,表示这样的一份或者几份的数,叫做分数。
理解若干份的意思:1份、2份、3份、4份………..
11、1/2、1/3、1/4、2/5、3/6、5/8
以上这些分数表示把单位“1”平均分成份,表示这样的份。
11、教学分母、分子
在分数里,表示把单位“1”平均分成多少份的数叫做分母。
表示这样多少份的数,叫做分子。其中的一份,叫做分数单位。
三、教学例1用直线上的点表示1/5和3/5。
想:直线上从0到1表示单位“1”,把他平均分成5分,这样的一份用1/5表示,这样的3份,可以用3/5表示。
试一试:指出下面直线上A、B、C各点分别表示几分之几?
四、巩固练习:
1、把15个圆平均分成5份,其中的2份用分数来表示。
2、把12面小红旗平均分成6分,其中的5分用分数来表示。
3、把12根小棒平均分成3份,每份是:如果平均分成2分,每份是。
4、说出下面每一个数的分数单,位,并指出每个分数含有多少个分数单位。
1/75/83/104/159/20xx/100
5、4/5是个1/5。
五、反馈总结。
六、布置作业。
反思:对于单位“1”的教学不够到位,应通过多种例子举例说明。让学生知道单位“1”不仅指一个物体,也可以指一个整体。这是教学的难点。应予以突破。对于分母、分子、分数单位概念的教学不够细腻。应加强。
分数的意义教案优秀 篇12
教学目标
知识与技能:初步建立单位“1”的概念,理解分数的意义以及分数单位的意义。
能力与方法:通过主动学习探究,理解并形成分数的概念,培养学生的科学探究和实践能力。
情感态度价值观:借助为分数配图,发展学生对美的体验与欣赏;揭示分数的产生,丰富学生的数学文化;通过同学间的合作,养成学生倾听、质疑等良好学习习惯。
教学重点和难点
教学重点:建立单位“1”的概念,能从具体实例中理解分数的意义。
教学难点:准确理解单位”1”.
教学方法
本课坚持以学生为主体,教师为主导的原则。采用启发诱导、探究等教学法。通过动手操作直观演示让学生充分感知,整堂课层层推进、步步深入。课堂中教师力求教给学生探索知识的方法,在引导学生在获取知识的同时,让他们归纳总结。
教学用具准备
多媒体课件,准备圆形纸,正方形纸、练习纸、小木棒等多种学具。
教学过程
一、理解单位“1”
1、谈话交流引入
教师板书“1”,同学们老师在黑板上写的是几?今天我们就从这个小小的“1”来开始展开学习这节课的内容。
老师往这一站就可以用几来表示?“1”除了可以表示一个人,还可以表示什么?(生答:一台电脑、一块黑板、一张桌子等等)
这个问题太简单了,一年级的孩子都知道,但现在我们是五年级的同学了。“1”除了可以表示一个人、一台电脑、一块黑板等等,还可以有其它的表示方法吗?(引导学生说出“1”还可以表示一群人、一堆物品、一排桌子等等)
演示:课件出示生活中的物体,深入理解一个物体和一些物体都可以用“1”来表示,加深对整体单位“1”的理解。
比较:现在的“1”和以前的“1”还是一样的意思吗?(现在的“1”不但可以表示一个个物体,还可以表示一堆物体、一群物体等等。)
结论:通过我们刚才的谈话和观察我们发现一个物体或是一些物体都可以看做一个整体,都可以用“1”来表示。在数学中我们通常把这个广义的“1”叫做单位“1”。
2、深入理解单位“1”
课件出示:三个西瓜你会用几来表示?如果我想用单位“1”来表示应该怎么办?(用集合圈把它圈起来)。六个西瓜还能用一来表示吗?那应该用几来表示呢?为什么?12个西瓜呢?为什么?(因为这里有四圈也就是4个“1”)
总结:原来我们发现有一个单位“1”就可以用1来表示。有几个单位“1”就可以用几来表示。
导入新课:这些都是我们了解的整数,可要是不足单位“1”那还能用整数来表示吗?那你会想到什么数?揭示课题:分数的意义
二、理解分数的意义
课件出示四分之一,看到这个分数你想到了什么?(让学生自由回答,回忆三年级学过的内容。)
1、理解一个物体的四分之一
同学们刚才说的很好,课前老师给同学们准备了一些学具圆片、正方形纸、和练习册等等,利用这些材料折一折、分一分、画一画,找出四分之一。
可引导学生想想:你是把什么看做一个整体单位“1”的?分成了几份?其中的几份就是四分之一?
学生可能会有以下的想法:
生:把一个圆片平均分成4份,取其中的一份就是这个圆片的四分之一。
生:把一张正方形平均分成4份,其中一份就是这张正方形纸的四分之一。
生:把一条线段平均分成4份,其中的一份就是这张圆片的四分之一。
……强调:你在分时应该怎样分才合理?你找到的四分之一是把什么看作单位“1”?是谁的四分之一?。
2、理解一个整体的四分之一
课件出示下面一些物体:你能不能从下面这些物体中找到出四分之一呢?我想让同学们先交流交流,在练习纸上分一分,画一画找出四分之一,小组交流后汇报。
在学生找的同时,引导他们思考:你是把什么看作单位“1”的?平均分成了几份?取其中的几份就是单位的“1”的四分之一?
生:把这四个苹果平均分成4份,一份就是这4个苹果的四分之一。
生:把八个正方体看做单位“1”平均分成4份,1份就是这八个正方体的四分之一?
生:把十二个五角星看作单位“1”平均分成4份,1份就是这十二个五角星的四分之一。
这个四分之一是把谁看做单位一呢?怎样才能把这四个苹果看做单位“1”呢?课件展示四分之一的形成过程。
操作:你们的学具袋中也有一些像老师这样许多物体组成的单位“1”,拿出来画一画、分一分,从单位“1”中找出四分之一,并和同学们交流交流。
生:我把8个圆圈看做单位“1”,平均分成4份,其中的1份就是这8个圆圈的四分之一。
……强调:你在分时是把谁看作单位“1”。
3、对比总结
我们找到了这么多的四分之一,这些四分之一的单位“1”相同吗?各是把谁看作单位“1”?可为什么都用四分之一来表示呢?
引导学生理解:虽然它们的单位“1”不相同,但它们都是把单位“1”平均分成四份,取了其中的1份。
4、寻找分母是四的其他分数
课件出示刚刚同学们的操作材料想:除了四分之一你还能找到其他分母是4的分数吗?说说你是怎么找到的?
5、创造分数
拿出学具中的12根小棒,利用这些小棒摆一摆、分一分,看看你能从小棒中发现哪些分数。思考:你把这些小棒分成了几份其中的几份就是这12根小棒的几分之几?
生:我把这些小棒分成了6份,我找到了六分之一,六分之二等等。
生:我把这些小棒分成了3份,我找到了三分之一,三分之二等等。
……教师顺势板书学生找到的分数。
6、总结分数的意义
在前面观察、操作、交流的基础上我们可以总结出分数的.意义:把单位“1”平均分成若干份,其中的一份或几份都可以用分数来表示。
三、认识分数单位
告诉学生:分数和整数一样也有它的分数单位。在分数中把单位“1”平均分成若干份,表示其中一份的数就是分数单位。如:四分之一、六分之一、三分之一、十二分之一都是分数单位。并让学生说说都是哪些分数的分数单位。如六分之一是六分之五的分数单位等等。
练习:老师报数学生说出这个分数的分数单位,并说说有几个这样的分数单位。
四、深化练习
1、读读下面有关分数的资料,说说每个分数的具体含义,并谈谈你的感受。
(1)我国小学生的近视人数约占总数的五分之一。
(2)小学生睡眠不足的人数大约占总人数的三分之二,小学生每天的睡眠时间应占一天(24小时)的八分之三。
(3)死海的表层的海水中含盐量达到了十分之三。
2、用分数表示下面各图的涂色部分(见课件)
3、下面各图中用分数表示的阴影部分对吗?说说理由。(见课件)
4、图形中找分数
图中蓝色部分是由一个长方形和一个正方形重叠后得到的,根据图形填空。
图形中的蓝色部分面积各占大正方形面积的,占大长方形面积的、占整个图形面积的。
5、数学智慧
这里有三盒巧克力,老师要求只能拿走每盒巧克力的1/5,可是小玲却从第一盒中拿走了1颗,从第二盒中拿走了2颗,从第三盒中拿走了3颗,这是为什么?
分数的意义教案优秀 篇13
学习内容:
教材104页例1、例2及做一做。
学习目标:
1、 我能理解同分母分数加、减法的算理,学会同分母分数加、减法的计算方法。
2、 我能正确计算同分母分数加、减法。
3、 我会用所学知识解决实际问题。
学习重点:
理解同分母分数加、减法的算理。
学习难点:
学会同分母分数加、减法的计算方法。
学习准备:
圆纸片
学习过程:
一、检查课前学习,导入新课
二、自主学习,合作探究
1、自学教材104页例1
(1)我得到的数学信息
(2)求爸爸妈妈一共吃了多少张饼?我写的算式
(3)我是这样想的,得出结果
(4)通过解答,我发现
分数加法的含义与整数加法的含义( )
计算同分母分数加法时,分母( ),分子( )。
2、小组合作学习例2
仔细观察,根据问题,写出算式。
我是这样想的.,得出结果:
从计算中,我发现分数减法含义与整数减法含义( ),计算同分母分数减法时,分母( ),分子( )。
3.小组展示,汇报。
4.观察例1和例2,我发现计算同分母分数加减法时,分母( ),分子( )。计算的结果不是最简分数时,应该( )。
5.我能行
完成105页做一做第一题。
分数的意义教案优秀 篇14
一、复习导入
1、根据分数与除法的关系填空。
被除数÷除数说说:分数与除法的关系。
2、提问:80÷20的商是多少?
被除数、除数都扩大5倍,商是多少?被除数和除数都缩小10倍呢?
回忆商不变性质(被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。)
(商不变的性质是学习分数基本性质的基础,所以这里的复习很有必要。)
二、新课
1、动手做数学。
(1)把4张相同的纸条分别平均分成2、4、6、8份,表示出1/2、2/4、3/6、4/8。
(涂上阴影)
(2)提问:比较它们的长度、有什么发现?能根据分数的意义加以说明吗?
(3)结论:几个分数虽然分母、分子都不相同,但大小是相等的。
2、设疑:为什么分子、分母都不同的几个分数可以相等,它们之间有什么规律呢?
(1)观察并研究分子、分母是按什么规律变化的?
1/2 =2/4 = 3/6 = 4/8学生观察的顺序可以自选。
(2)学生发现并归纳得出的规律(揭示:分数的基本性质):
分数的分子和分母同时乘以或者除以相同的数分数的大小不变。
(3)理解意义。
提问:刚才我们根据分数的意义来说明分数的基本性质的'。能不能根据分数与除法的关系和商不变的规律来说明呢?
先回忆商不变规律,然后想分数与除法的关系。突出关键点:零除外。(因为分数的分子和分母同时乘上0,则分数成为0/0,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母不能同时除以0,因此要“0除外”。)
将分数的基本性质补充完整。
3、应用性质、解决问题。
(1)指出:应用分数的基本性质可以把一个分数化成分母不同而大小相等的分数。
(2)把3/4和15/24化成分母是8而大小不变的分数。
要求:独立思考解答、交流方法
(3)师生一起总结方法:
看分母(分子)乘或除以几、分子(分母)也同时乘或除以几。
(4)独立完成练一练。
重点是:学生要能自觉根据分数的基本性质观察分母或分子是怎样变化的,相应地分子或分母就怎样变化。
变化的依据是分数的基本性质
(5)口答练习十八第2题并说明判断的依据。
4、全课总结:你能将这节课的内容及重点归纳概括一下吗?
5、作业:完成练习十四
理解并掌握分数的基本性质,同桌互相说分数并指定分母或分子让另一个同学化。
三、难点点拨
在运用分数的基本性质时,会出现以下几种错误:
①忽略了“同时”。举例说明= =是错误的,只是分子乘2,分母不变,正确答案应是= = 。
②忽略了“乘上或者除以”。举例说明,= =是错误的,因为分子和分母同时加上或者同时减去相同的数,分数的大小变了。在分数的基本性质中只限于“乘上或者除以”。
在理解分数的基本性质时要注意三点:必须强调“同时”;必须强调“乘上或除以相同的数”;必须强调“0除外”。
③忽略了“相同的数”。举例说明,= =是错误的,因为分子和分母应同时除以相同的